@article{MichaelisAengenheisterTuchtenhagenetal.2022, author = {Michaelis, Vivien and Aengenheister, Leonie and Tuchtenhagen, Max and Rinklebe, J{\"o}rg and Ebert, Franziska and Schwerdtle, Tanja and Buerki-Thurnherr, Tina and Bornhorst, Julia}, title = {Differences and interactions in placental manganese and iron transfer across an in vitro model of human villous trophoblasts}, series = {International journal of molecular sciences}, volume = {23}, journal = {International journal of molecular sciences}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms23063296}, pages = {18}, year = {2022}, abstract = {Manganese (Mn) as well as iron (Fe) are essential trace elements (TE) important for the maintenance of physiological functions including fetal development. However, in the case of Mn, evidence suggests that excess levels of intrauterine Mn are associated with adverse pregnancy outcomes. Although Mn is known to cross the placenta, the fundamentals of Mn transfer kinetics and mechanisms are largely unknown. Moreover, exposure to combinations of TEs should be considered in mechanistic transfer studies, in particular for TEs expected to share similar transfer pathways. Here, we performed a mechanistic in vitro study on the placental transfer of Mn across a BeWo b30 trophoblast layer. Our data revealed distinct differences in the placental transfer of Mn and Fe. While placental permeability to Fe showed a clear inverse dose-dependency, Mn transfer was largely independent of the applied doses. Concurrent exposure of Mn and Fe revealed transfer interactions of Fe and Mn, indicating that they share common transfer mechanisms. In general, mRNA and protein expression of discussed transporters like DMT1, TfR, or FPN were only marginally altered in BeWo cells despite the different exposure scenarios highlighting that Mn transfer across the trophoblast layer likely involves a combination of active and passive transport processes.}, language = {en} } @inproceedings{MichaelisAengenheisterSchwerdtleetal.2021, author = {Michaelis, Vivien and Aengenheister, Leonie and Schwerdtle, Tanja and Buerki-Thurnherr, Tina and Bornhorst, Julia}, title = {Manganese translocation across an in vitro model of human villous trophoblast}, series = {Placenta}, volume = {112}, booktitle = {Placenta}, publisher = {Elsevier}, address = {Amsterdam [u.a.]}, issn = {0143-4004}, doi = {10.1016/j.placenta.2021.07.205}, pages = {E63 -- E64}, year = {2021}, language = {en} } @article{NicolaiWittFrieseetal.2022, author = {Nicolai, Merle Marie and Witt, Barbara and Friese, Sharleen and Michaelis, Vivien and H{\"o}lz-Armstrong, Lisa and Martin, Maximilian and Ebert, Franziska and Schwerdtle, Tanja and Bornhorst, Julia}, title = {Mechanistic studies on the adverse effects of manganese overexposure in differentiated LUHMES cells}, series = {Food and chemical toxicology}, volume = {161}, journal = {Food and chemical toxicology}, publisher = {Elsevier}, address = {Oxford}, issn = {0278-6915}, doi = {10.1016/j.fct.2022.112822}, pages = {10}, year = {2022}, abstract = {Manganese (Mn) is an essential trace element, but overexposure is associated with toxicity and neurological dysfunction. Accumulation of Mn can be observed in dopamine-rich regions of the brain in vivo and Mn-induced oxidative stress has been discussed extensively. Nevertheless, Mn-induced DNA damage, adverse effects of DNA repair, and possible resulting consequences for the neurite network are not yet characterized. For this, LUHMES cells were used, as they differentiate into dopaminergic-like neurons and form extensive neurite networks. Experiments were conducted to analyze Mn bioavailability and cytotoxicity of MnCl2, indicating a dose-dependent uptake and substantial cytotoxic effects. DNA damage, analyzed by means of 8-oxo-7,8-dihydro-2'-guanine (8oxodG) and single DNA strand break formation, showed significant dose- and time-dependent increase of DNA damage upon 48 h Mn exposure. Furthermore, the DNA damage response was increased which was assessed by analytical quantification of poly(ADP-ribosyl)ation (PARylation). Gene expression of the respective DNA repair genes was not significantly affected. Degradation of the neuronal network is significantly altered by 48 h Mn exposure. Altogether, this study contributes to the characterization of Mn-induced neurotoxicity, by analyzing the adverse effects of Mn on genome integrity in dopaminergic-like neurons and respective outcomes.}, language = {en} } @misc{BaeslerMichaelisStibolleretal.2021, author = {Baesler, Jessica and Michaelis, Vivien and Stiboller, Michael and Haase, Hajo and Aschner, Michael and Schwerdtle, Tanja and Sturzenbaum, Stephen R. and Bornhorst, Julia}, title = {Nutritive manganese and zinc overdosing in aging c. elegans result in a metallothionein-mediated alteration in metal homeostasis}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {8}, issn = {1866-8372}, doi = {10.25932/publishup-51499}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-514995}, pages = {13}, year = {2021}, abstract = {Manganese (Mn) and zinc (Zn) are not only essential trace elements, but also potential exogenous risk factors for various diseases. Since the disturbed homeostasis of single metals can result in detrimental health effects, concerns have emerged regarding the consequences of excessive exposures to multiple metals, either via nutritional supplementation or parenteral nutrition. This study focuses on Mn-Zn-interactions in the nematode Caenorhabditis elegans (C. elegans) model, taking into account aspects related to aging and age-dependent neurodegeneration.}, language = {en} } @article{BaeslerMichaelisStibolleretal.2021, author = {Baesler, Jessica and Michaelis, Vivien and Stiboller, Michael and Haase, Hajo and Aschner, Michael and Schwerdtle, Tanja and Sturzenbaum, Stephen R. and Bornhorst, Julia}, title = {Nutritive manganese and zinc overdosing in aging c. elegans result in a metallothionein-mediated alteration in metal homeostasis}, series = {Molecular Nutrition and Food Research}, volume = {65}, journal = {Molecular Nutrition and Food Research}, number = {8}, publisher = {Wiley-VCH GmbH}, address = {Weinheim}, issn = {1613-4133}, doi = {10.1002/mnfr.202001176}, pages = {1 -- 11}, year = {2021}, abstract = {Manganese (Mn) and zinc (Zn) are not only essential trace elements, but also potential exogenous risk factors for various diseases. Since the disturbed homeostasis of single metals can result in detrimental health effects, concerns have emerged regarding the consequences of excessive exposures to multiple metals, either via nutritional supplementation or parenteral nutrition. This study focuses on Mn-Zn-interactions in the nematode Caenorhabditis elegans (C. elegans) model, taking into account aspects related to aging and age-dependent neurodegeneration.}, language = {en} }