@article{GrimmBergerBastiansenetal.2006, author = {Grimm, Volker and Berger, Uta and Bastiansen, Finn and Eliassen, Sigrunn and Ginot, Vincent and Giske, Jarl and Goss-Custard, John and Grand, Tamara and Heinz, Simone K. and Huse, Geir and Huth, Andreas and Jepsen, Jane U. and Jorgensen, Christian and Mooij, Wolf M. and Mueller, Birgit and Piou, Cyril and Railsback, Steven Floyd and Robbins, Andrew M. and Robbins, Martha M. and Rossmanith, Eva and Rueger, Nadja and Strand, Espen and Souissi, Sami and Stillman, Richard A. and Vabo, Rune and Visser, Ute and DeAngelis, Donald L.}, title = {A standard protocol for describing individual-based and agent-based models}, series = {Ecological modelling : international journal on ecological modelling and engineering and systems ecolog}, volume = {198}, journal = {Ecological modelling : international journal on ecological modelling and engineering and systems ecolog}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-3800}, doi = {10.1016/j.ecolmodel.2006.04.023}, pages = {115 -- 126}, year = {2006}, abstract = {Simulation models that describe autonomous individual organisms (individual based models, IBM) or agents (agent-based models, ABM) have become a widely used tool, not only in ecology, but also in many other disciplines dealing with complex systems made up of autonomous entities. However, there is no standard protocol for describing such simulation models, which can make them difficult to understand and to duplicate. This paper presents a proposed standard protocol, ODD, for describing IBMs and ABMs, developed and tested by 28 modellers who cover a wide range of fields within ecology. This protocol consists of three blocks (Overview, Design concepts, and Details), which are subdivided into seven elements: Purpose, State variables and scales, Process overview and scheduling, Design concepts, Initialization, Input, and Submodels. We explain which aspects of a model should be described in each element, and we present an example to illustrate the protocol in use. In addition, 19 examples are available in an Online Appendix. We consider ODD as a first step for establishing a more detailed common format of the description of IBMs and ABMs. Once initiated, the protocol will hopefully evolve as it becomes used by a sufficiently large proportion of modellers. (c) 2006 Elsevier B.V. All rights reserved.}, language = {en} } @article{GrimmRevillaBergeretal.2005, author = {Grimm, Volker and Revilla, Eloy and Berger, Uta and Jeltsch, Florian and Mooij, Wolf M. and Railsback, Steven Floyd and Thulke, Hans-Hermann and Weiner, Jacob and Wiegand, Thorsten and DeAngelis, Donald L.}, title = {Pattern-oriented modeling of agend-based complex systems : lessons from ecology}, year = {2005}, abstract = {Agent-based complex systems are dynamic networks of many interacting agents; examples include ecosystems, financial markets, and cities. The search for general principles underlying the internal organization of such systems often uses bottom-up simulation models such as cellular automata and agent-based models. No general framework for designing, testing, and analyzing bottom-up models has yet been established, but recent advances in ecological modeling have come together in a general strategy we call pattern-oriented modeling. This strategy provides a unifying framework for decoding the internal organization of agent-based complex systems and may lead toward unifying algorithmic theories of the relation between adaptive behavior and system complexity}, language = {en} } @article{MooijTrolleJeppesenetal.2010, author = {Mooij, Wolf M. and Trolle, Dennis and Jeppesen, Erik and Arhonditsis, George B. and Belolipetsky, Pavel V. and Chitamwebwa, Deonatus B. R. and Degermendzhy, Andrey G. and DeAngelis, Donald L. and Domis, Lisette Nicole de Senerpont and Downing, Andrea S. and Elliott, J. Alex and Fragoso Jr, Carlos Ruberto and Gaedke, Ursula and Genova, Svetlana N. and Gulati, Ramesh D. and H{\aa}kanson, Lars and Hamilton, David P. and Hipsey, Matthew R. and 't Hoen, Jochem and H{\"u}lsmann, Stephan and Los, F. Hans and Makler-Pick, Vardit and Petzoldt, Thomas and Prokopkin, Igor G. and Rinke, Karsten and Schep, Sebastiaan A. and Tominaga, Koji and Van Dam, Anne A. and Van Nes, Egbert H. and Wells, Scott A. and Janse, Jan H.}, title = {Challenges and opportunities for integrating lake ecosystem modelling approaches}, series = {Aquatic ecology}, volume = {44}, journal = {Aquatic ecology}, publisher = {Springer Science + Business Media B.V.}, address = {Dordrecht}, issn = {1573-5125}, doi = {10.1007/s10452-010-9339-3}, pages = {633 -- 667}, year = {2010}, abstract = {A large number and wide variety of lake ecosystem models have been developed and published during the past four decades. We identify two challenges for making further progress in this field. One such challenge is to avoid developing more models largely following the concept of others ('reinventing the wheel'). The other challenge is to avoid focusing on only one type of model, while ignoring new and diverse approaches that have become available ('having tunnel vision'). In this paper, we aim at improving the awareness of existing models and knowledge of concurrent approaches in lake ecosystem modelling, without covering all possible model tools and avenues. First, we present a broad variety of modelling approaches. To illustrate these approaches, we give brief descriptions of rather arbitrarily selected sets of specific models. We deal with static models (steady state and regression models), complex dynamic models (CAEDYM, CE-QUAL-W2, Delft 3D-ECO, LakeMab, LakeWeb, MyLake, PCLake, PROTECH, SALMO), structurally dynamic models and minimal dynamic models. We also discuss a group of approaches that could all be classified as individual based: super-individual models (Piscator, Charisma), physiologically structured models, stage-structured models and traitbased models. We briefly mention genetic algorithms, neural networks, Kalman filters and fuzzy logic. Thereafter, we zoom in, as an in-depth example, on the multi-decadal development and application of the lake ecosystem model PCLake and related models (PCLake Metamodel, Lake Shira Model, IPH-TRIM3D-PCLake). In the discussion, we argue that while the historical development of each approach and model is understandable given its 'leading principle', there are many opportunities for combining approaches. We take the point of view that a single 'right' approach does not exist and should not be strived for. Instead, multiple modelling approaches, applied concurrently to a given problem, can help develop an integrative view on the functioning of lake ecosystems. We end with a set of specific recommendations that may be of help in the further development of lake ecosystem models.}, language = {en} } @misc{MooijTrolleJeppesenetal.2010, author = {Mooij, Wolf M. and Trolle, Dennis and Jeppesen, Erik and Arhonditsis, George B. and Belolipetsky, Pavel V. and Chitamwebwa, Deonatus B. R. and Degermendzhy, Andrey G. and DeAngelis, Donald L. and Domis, Lisette Nicole de Senerpont and Downing, Andrea S. and Elliott, J. Alex and Fragoso Jr., Carlos Ruberto and Gaedke, Ursula and Genova, Svetlana N. and Gulati, Ramesh D. and H{\aa}kanson, Lars and Hamilton, David P. and Hipsey, Matthew R. and 't Hoen, Jochem and H{\"u}lsmann, Stephan and Los, F. Hans and Makler-Pick, Vardit and Petzoldt, Thomas and Prokopkin, Igor G. and Rinke, Karsten and Schep, Sebastiaan A. and Tominaga, Koji and Van Dam, Anne A. and Van Nes, Egbert H. and Wells, Scott A. and Janse, Jan H.}, title = {Challenges and opportunities for integrating lake ecosystem modelling approaches}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1326}, issn = {1866-8372}, doi = {10.25932/publishup-42983}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-429839}, pages = {35}, year = {2010}, abstract = {A large number and wide variety of lake ecosystem models have been developed and published during the past four decades. We identify two challenges for making further progress in this field. One such challenge is to avoid developing more models largely following the concept of others ('reinventing the wheel'). The other challenge is to avoid focusing on only one type of model, while ignoring new and diverse approaches that have become available ('having tunnel vision'). In this paper, we aim at improving the awareness of existing models and knowledge of concurrent approaches in lake ecosystem modelling, without covering all possible model tools and avenues. First, we present a broad variety of modelling approaches. To illustrate these approaches, we give brief descriptions of rather arbitrarily selected sets of specific models. We deal with static models (steady state and regression models), complex dynamic models (CAEDYM, CE-QUAL-W2, Delft 3D-ECO, LakeMab, LakeWeb, MyLake, PCLake, PROTECH, SALMO), structurally dynamic models and minimal dynamic models. We also discuss a group of approaches that could all be classified as individual based: super-individual models (Piscator, Charisma), physiologically structured models, stage-structured models and traitbased models. We briefly mention genetic algorithms, neural networks, Kalman filters and fuzzy logic. Thereafter, we zoom in, as an in-depth example, on the multi-decadal development and application of the lake ecosystem model PCLake and related models (PCLake Metamodel, Lake Shira Model, IPH-TRIM3D-PCLake). In the discussion, we argue that while the historical development of each approach and model is understandable given its 'leading principle', there are many opportunities for combining approaches. We take the point of view that a single 'right' approach does not exist and should not be strived for. Instead, multiple modelling approaches, applied concurrently to a given problem, can help develop an integrative view on the functioning of lake ecosystems. We end with a set of specific recommendations that may be of help in the further development of lake ecosystem models.}, language = {en} } @misc{SiblyGrimmMartinetal.2013, author = {Sibly, Richard M. and Grimm, Volker and Martin, Benjamin T. and Johnston, Alice S. A. and Kulakowska, Katarzyna and Topping, Christopher J. and Calow, Peter and Nabe-Nielsen, Jacob and Thorbek, Pernille and DeAngelis, Donald L.}, title = {Representing the acquisition and use of energy by individuals in agent-based models of animal populations}, series = {Methods in ecology and evolution : an official journal of the British Ecological Society}, volume = {4}, journal = {Methods in ecology and evolution : an official journal of the British Ecological Society}, number = {2}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {2041-210X}, doi = {10.1111/2041-210x.12002}, pages = {151 -- 161}, year = {2013}, abstract = {Agent-based models (ABMs) are widely used to predict how populations respond to changing environments. As the availability of food varies in space and time, individuals should have their own energy budgets, but there is no consensus as to how these should be modelled. Here, we use knowledge of physiological ecology to identify major issues confronting the modeller and to make recommendations about how energy budgets for use in ABMs should be constructed. Our proposal is that modelled animals forage as necessary to supply their energy needs for maintenance, growth and reproduction. If there is sufficient energy intake, an animal allocates the energy obtained in the order: maintenance, growth, reproduction, energy storage, until its energy stores reach an optimal level. If there is a shortfall, the priorities for maintenance and growth/reproduction remain the same until reserves fall to a critical threshold below which all are allocated to maintenance. Rates of ingestion and allocation depend on body mass and temperature. We make suggestions for how each of these processes should be modelled mathematically. Mortality rates vary with body mass and temperature according to known relationships, and these can be used to obtain estimates of background mortality rate. If parameter values cannot be obtained directly, then values may provisionally be obtained by parameter borrowing, pattern-oriented modelling, artificial evolution or from allometric equations. The development of ABMs incorporating individual energy budgets is essential for realistic modelling of populations affected by food availability. Such ABMs are already being used to guide conservation planning of nature reserves and shell fisheries, to assess environmental impacts of building proposals including wind farms and highways and to assess the effects on nontarget organisms of chemicals for the control of agricultural pests.}, language = {en} }