@phdthesis{Massolt2020, author = {Massolt, Joost Willem}, title = {Perceived relevance of physics problems}, doi = {10.25932/publishup-47292}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-472925}, school = {Universit{\"a}t Potsdam}, pages = {102}, year = {2020}, abstract = {Pre-service physics teachers often have difficulties seeing the relevance of the content of the content knowledge courses they attend in their study; they regularly do not see the connection with the physics they need in their later profession as a secondary school teacher. A lower perceived relevance is however connected to motivational problems which leads to both a qualitative and quantitative problem: not only is there a relation between the drop-out of students and their motivation, but their level of conceptual understanding is also suffering under this lower motivation. In order to increase the perceived relevance of the problems that pre-service physics teachers have to solve for the courses Experimentalphysik 1 and 2, an intervention study has been designed and implemented. In these content knowledge courses, first- and second semester students attend lectures, do experiments and they solve problems on weekly problem sets which are discussed in tutorial sessions. The problems on a typical problem set are however mainly quantitative problems that have no connection to school. In the intervention study, regular, quantitative problems are used next to two newly designed conceptual (qualitative) problem types. One of these problem types are conceptual problems that have no implicit or explicit school-relevance; the other problems are based on school-related content knowledge. This content knowledge category describes knowledge that leads to a deeper understanding of school knowledge, relevant for teachers: a teacher-specific content knowledge. A new model for this category, SRCK, has been conceptualised and operationalised as a cross-disciplinary model that consists of conceptual knowledge and skills necessary for this deeper understanding of content that is relevant to teaching at a secondary school. During two semesters in both the courses Experimentalphysik 1 and 2 (N = 75 and N = 43 respectively) students had to solve the problems on the problem sets. At the start of every tutorial session, they were asked to rate all the problems with respect to perceived relevance and difficulty. Analyses show that the problems based on SRCK were perceived as more relevant than the regular, quantitative problems. However, this difference is only statistically significant for the course Experimentalphysik 2. The SRCK-problems show the connection between the content of the problems and school physics and are therefore seen as more relevant. In Experimentalphysik 1, the content is not that distant to school physics. This might be the reason that the students see all the problem types as just as relevant to them. When we however only look at the final third of the first semester, where more advanced subjects - that are not necessarily discussed in secondary school physics - are discussed, we see that in this part the SRCK-problems are seen as more relevant than the regular problems too. We can therefore conclude that if the content is distant to school physics, the SRCK-problems are seen as more relevant than the regular problems. We do not see a statistically significant difference between the (conceptual) problems based on SRCK and the conceptual problems that are not based on SRCK (and therefore have no school relevance). This means that we do not know whether the conceptual problems based on SRCK are more relevant because they are based on SRCK or because they are conceptual. In order to find out what problem properties have an influence on the perceived relevance of these problems by pre-service teachers, an interview study with N = 7 pre-service teachers was conducted. This interview was done using the repertory grid technique, based on the personal construct theory by Kelly (1955). This technique makes it possible to find personal constructs of students: how do students determine for themselves how relevant a problem is to them? It allows to capture their intuition or gut feeling. These personal constructs could then give us information about the problem properties that have a positive influence on relevance. Six categories of personal constructs were found that have a high similarity to relevance. According to the personal constructs that were generated in the interviews, physics problems are more relevant when they are more conceptual (compared to calculational), are close to everyday life, have a lower level of mathematical requirement, have a content that is more school-relevant, give the students the idea that they have learned something, and contain a situation that has to be analysed. Of the six problem properties described above, one can be connected to the facets of SRCK: many problems based on SRCK contain a situation (e.g. a textbook with a simplified explanation, a student solution with an error) that has to be analysed. The expectation is that problems that are based on the six properties described above would be perceived as more relevant to pre-service physics teachers.}, language = {en} }