@phdthesis{Kuenstler2015, author = {K{\"u}nstler, Andreas}, title = {Spot evolution on the red giant star XX Triangulum}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-84008}, school = {Universit{\"a}t Potsdam}, year = {2015}, abstract = {Spots on stellar surfaces are thought to be stellar analogues of sunspots. Thus, starspots are direct manifestations of strong magnetic fields. Their decay rate is directly related to the magnetic diffusivity, which itself is a key quantity for the deduction of an activity cycle length. So far, no single starspot decay has been observed, and thus no stellar activity cycle was inferred from its corresponding turbulent diffusivity. We investigate the evolution of starspots on the rapidly-rotating K0 giant XX Triangulum. Continuous high-resolution and phase-resolved spectroscopy was obtained with the robotic 1.2-m STELLA telescope on Tenerife over a timespan of six years. With our line-profile inversion code iMap we reconstruct a total of 36 consecutive Doppler maps. To quantify starspot area decay and growth, we match the observed images with simplified spot models based on a Monte-Carlo approach. It is shown that the surface of XX Tri is covered with large high-latitude and even polar spots and with occasional small equatorial spots. Just over the course of six years, we see a systematically changing spot distribution with various time scales and morphology such as spot fragmentation and spot merging as well as spot decay and formation. For the first time, a starspot decay rate on another star than the Sun is determined. From our spot-decay analysis we determine an average linear decay rate of D = -0.067±0.006 Gm^2/day. From this decay rate, we infer a turbulent diffusivity of η_τ = (6.3±0.5) x 10^14 cm^2/s and consequently predict an activity cycle of 26±6 years. The obtained cycle length matches very well with photometric observations. Our time-series of Doppler maps further enables to investigate the differential rotation of XX Tri. We therefore applied a cross-correlation analysis. We detect a weak solar-like differential rotation with a surface shear of α = 0.016±0.003. This value agrees with similar studies of other RS CVn stars. Furthermore, we found evidence for active longitudes and flip-flops. Whereas the more active longitude is located in phase towards the (unseen) companion star, the weaker active longitude is located at the opposite stellar hemisphere. From their periodic appearance, we infer a flip-flop cycle of ~2 years. Both activity phenomena are common on late-type binary stars. Last but not least we redetermine several astrophysical properties of XX Tri and its binary system, as large datasets of photometric and spectroscopic observations are available since its last determination in 1999. Additionally, we compare the rotational spot-modulation from photometric and spectroscopic studies.}, language = {en} } @phdthesis{Weber2004, author = {Weber, Michael H.}, title = {Robotic telescopes \& Doppler imaging : measuring differential rotation on long-period active stars}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001834}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {Auf der Sonne sind viele Ph{\"a}nomene zu sehen die mit der solaren magnetischen Aktivit{\"a}t zusammenh{\"a}ngen. Das daf{\"u}r zust{\"a}ndige Magnetfeld wird durch einen Dynamo erzeugt, der sich vermutlich am Boden der Konvektionszone in der sogenannten Tachocline befindet. Angetrieben wird der Dynamo teils von der differenziellen Rotation, teils von den magnetischen Turbulenzen in der Konvektionszone. Die differentielle Rotation kann an der Sonnenoberfl{\"a}che durch beobachten der Sonnenfleckbewegungen gemessen werden.Um einen gr{\"o}ßeren Parameterraum zum Testen von Dynamotheorien zu erhalten, kann man diese Messungen auch auf andere Sterne ausdehnen. Das prim{\"a}re Problem dabei ist, dass die Oberfl{\"a}chen von Sternen nicht direkt beobachtet werden k{\"o}nnen. Indirekt kann man dies jedoch mit Hilfe der Doppler-imaging Methode erreichen, die die Doppler-Verbreitung der Spektrallinien von schnell rotierenden Sternen ben{\"u}tzt. Um jedoch ein Bild der Sternoberfl{\"a}che zu erhalten, bedarf es vieler hochaufgel{\"o}ster spektroskopischer Beobachtungen, die gleichm{\"a}ßig {\"u}ber eine Sternrotation verteilt sein m{\"u}ssen. F{\"u}r Sterne mit langen Rotationsperioden sind diese Beobachtungen nur schwierig durchzuf{\"u}hren. Das neue robotische Observatorium STELLA adressiert dieses Problem und bietet eine auf Dopplerimaging abgestimmte Ablaufplanung der Beobachtungen an. Dies wird solche Beobachtungen nicht nur leichter durchf{\"u}hrbar machen, sondern auch effektiver gestalten.Als Vorschau welche Ergebnisse mit STELLA erwartet werden k{\"o}nnen dient eine Studie an sieben Sternen die allesamt eine lange (zwischen sieben und 25 Tagen) Rotationsperiode haben. Alle Sterne zeigen differentielle Rotation, allerdings sind die Messfehler aufgrund der nicht zufriedenstellenden Datenqualit{\"a}t von gleicher Gr{\"o}ßenordnung wie die Ergebnisse, ein Problem das bei STELLA nicht auftreten wird. Um die Konsistenz der Ergebnisse zu pr{\"u}fen wurde wenn m{\"o}glich sowohl eine Kreuzkorrelationsanalyse als auch die sheared-image Methode angewandt. Vier von diesen sieben Sternen weisen eine differentielle Rotation in umgekehrter Richtung auf als auf der Sonne zu sehen ist. Die restlichen drei Sterne weisen schwache, aber in der Richtung sonnen{\"a}hnliche differentielle Rotation auf.Abschließend werden diese neuen Messungen mit bereits publizierten Werten kombiniert, und die so erhaltenen Daten auf Korrelationen zwischen differentieller Rotation, Rotationsperiode, Evolutionsstaus, Spektraltyp und Vorhandensein eines Doppelsterns {\"u}berpr{\"u}ft. Alle Sterne zusammen zeigen eine signifikante Korrelation zwischen dem Betrag der differenziellen Rotation und der Rotationsperiode. Unterscheidet man zwischen den Richtungen der differentiellen Rotation, so bleibt nur eine Korrelation der Sterne mit antisolarem Verhalten. Dar{\"u}berhinaus zeigt sich auch, dass Doppelsterne schw{\"a}cher differentiell rotieren.}, language = {en} } @phdthesis{Mallonn2014, author = {Mallonn, Matthias}, title = {Ground-based transmission spectroscopy of three inflated Hot Jupiter exoplanets}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-74403}, school = {Universit{\"a}t Potsdam}, pages = {ix, 115}, year = {2014}, abstract = {The characterization of exoplanets is a young and rapidly expanding field in astronomy. It includes a method called transmission spectroscopy that searches for planetary spectral fingerprints in the light received from the host star during the event of a transit. This techniques allows for conclusions on the atmospheric composition at the terminator region, the boundary between the day and night side of the planet. Observationally a big challenge, first attempts in the community have been successful in the detection of several absorption features in the optical wavelength range. These are for example a Rayleighscattering slope and absorption by sodium and potassium. However, other objects show a featureless spectrum indicative for a cloud or haze layer of condensates masking the probable atmospheric layers. In this work, we performed transmission spectroscopy by spectrophotometry of three Hot Jupiter exoplanets. When we began the work on this thesis, optical transmission spectra have been available for two exoplanets. Our main goal was to advance the current sample of probed objects to learn by comparative exoplanetology whether certain absorption features are common. We selected the targets HAT-P-12b, HAT-P-19b and HAT-P-32b, for which the detection of atmospheric signatures is feasible with current ground-based instrumentation. In addition, we monitored the host stars of all three objects photometrically to correct for influences of stellar activity if necessary. The obtained measurements of the three objects all favor featureless spectra. A variety of atmospheric compositions can explain the lack of a wavelength dependent absorption. But the broad trend of featureless spectra in planets of a wide range of temperatures, found in this work and in similar studies recently published in the literature, favors an explanation based on the presence of condensates even at very low concentrations in the atmospheres of these close-in gas giants. This result points towards the general conclusion that the capability of transmission spectroscopy to determine the atmospheric composition is limited, at least for measurements at low spectral resolution. In addition, we refined the transit parameters and ephemerides of HAT-P-12b and HATP- 19b. Our monitoring campaigns allowed for the detection of the stellar rotation period of HAT-P-19 and a refined age estimate. For HAT-P-12 and HAT-P-32, we derived upper limits on their potential variability. The calculated upper limits of systematic effects of starspots on the derived transmission spectra were found to be negligible for all three targets. Finally, we discussed the observational challenges in the characterization of exoplanet atmospheres, the importance of correlated noise in the measurements and formulated suggestions on how to improve on the robustness of results in future work.}, language = {en} }