@article{SelleKnorrLischeid2019, author = {Selle, Benny and Knorr, Klaus-Holger and Lischeid, Gunnar}, title = {Mobilisation and transport of dissolved organic carbon and iron in peat catchments-Insights from the Lehstenbach stream in Germany using generalised additive models}, series = {Hydrological processes}, volume = {33}, journal = {Hydrological processes}, number = {25}, publisher = {Wiley}, address = {Hoboken}, issn = {0885-6087}, doi = {10.1002/hyp.13552}, pages = {3213 -- 3225}, year = {2019}, abstract = {During the last decades, increasing exports of both dissolved organic carbon (DOC) and iron were observed from peat catchments in North America and Europe with potential consequences for water quality of streamwater and carbon storages of soils. As mobilisation and transport processes of DOC and iron in peat catchments are only partly understood, the purpose of this study was to elucidate these processes in an intensively monitored and studied system. Specifically, it was hypothesised that dissimilatory iron reduction in riparian peatland soils mobilises DOC initially adsorbed to iron minerals. During stormflow conditions, both DOC and iron will be transported into the stream network. Ferrous iron may be reoxidised at redox interfaces on its way to the stream, and subsequently, ferric iron could be transported together with DOC as complexes. To test these hypotheses, generalised additive models (GAMs) were applied to 14 years of weekly time series of discharge and concentrations of selected solutes measured in a German headwater stream called Lehstenbach. This stream drains a 4.19-km(2) forested mountain catchment; one third of which is covered by riparian peatland soils. We interpreted results of different types of GAM in the way that (a) iron reduction drove the mobilisation of DOC from peatland soils and that (b) both iron and DOC were transported as complexes after their joint mobilisation to and within the steam. It was speculated that low nitrate availability in the uppermost wetland soil layer, particularly during the growing season, promoted iron reduction and thus the mobilisation of DOC. However, the influence of nitrate on the DOC mobilisation remains relatively uncertain. This influence could be further investigated using methods similar to the GAM analysis conducted here for other catchments with long-term data as well as detailed measurements of the relevant species in riparian wetland soils and the adjacent stream network.}, language = {en} } @article{SchmidtNendelFunketal.2019, author = {Schmidt, Martin and Nendel, Claas and Funk, Roger and Mitchell, Matthew G. E. and Lischeid, Gunnar}, title = {Modeling Yields Response to Shading in the Field-to-Forest Transition Zones in Heterogeneous Landscapes}, series = {Agriculture}, volume = {9}, journal = {Agriculture}, number = {1}, publisher = {MDPI}, address = {Basel}, issn = {2077-0472}, doi = {10.3390/agriculture9010006}, pages = {15}, year = {2019}, abstract = {In crop modeling and yield predictions, the heterogeneity of agricultural landscapes is usually not accounted for. This heterogeneity often arises from landscape elements like forests, hedges, or single trees and shrubs that cast shadows. Shading from forested areas or shrubs has effects on transpiration, temperature, and soil moisture, all of which affect the crop yield in the adjacent arable land. Transitional gradients of solar irradiance can be described as a function of the distance to the zero line (edge), the cardinal direction, and the height of trees. The magnitude of yield reduction in transition zones is highly influenced by solar irradiance-a factor that is not yet implemented in crop growth models on a landscape level. We present a spatially explicit model for shading caused by forested areas, in agricultural landscapes. With increasing distance to forest, solar irradiance and yield increase. Our model predicts that the shading effect from the forested areas occurs up to 15 m from the forest edge, for the simulated wheat yields, and up to 30 m, for simulated maize. Moreover, we estimated the spatial extent of transition zones, to calculate the regional yield reduction caused by shading of the forest edges, which amounted to 5\% to 8\% in an exemplary region.}, language = {en} } @article{SchmidtLischeidNendel2019, author = {Schmidt, Martin and Lischeid, Gunnar and Nendel, Claas}, title = {Microclimate and matter dynamics in transition zones of forest to arable land}, series = {Agricultural and forest meteorology}, volume = {268}, journal = {Agricultural and forest meteorology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0168-1923}, doi = {10.1016/j.agrformet.2019.01.001}, pages = {1 -- 10}, year = {2019}, abstract = {Human-driven fragmentation of landscapes leads to the formation of transition zones between ecosystems that are characterised by fluxes of matter, energy and information. These transition zones may offer rather inhospitable habitats that could jeopardise biodiversity. On the other hand, transition zones are also reported to be hotspots for biodiversity and even evolutionary processes. The general mechanisms and influence of processes in transition zones are poorly understood. Although heterogeneity and diversity of land use of fragments and the transition zones between them play an important role, most studies only refer to forested transition zones. Often, only an extrapolation of measurements in the different fragments themselves is reported to determine gradients in transition zones. This paper contributes to a quantitative understanding of agricultural landscapes beyond individual ecotopes, and towards connected ecosystem mosaics that may be beneficial for the provision of ecosystem services.}, language = {en} }