@misc{SommerAdrianDomisetal.2012, author = {Sommer, Ulrich and Adrian, Rita and Domis, Lisette Nicole de Senerpont and Elser, James J. and Gaedke, Ursula and Ibelings, Bas and Jeppesen, Erik and Lurling, Miquel and Molinero, Juan Carlos and Mooij, Wolf M. and van Donk, Ellen and Winder, Monika}, title = {Beyond the Plankton Ecology Group (PEG) Model mechanisms driving plankton succession}, series = {Annual review of ecology, evolution, and systematics}, volume = {43}, journal = {Annual review of ecology, evolution, and systematics}, number = {2-4}, editor = {Futuyma, DJ}, publisher = {Annual Reviews}, address = {Palo Alto}, isbn = {978-0-8243-1443-9}, issn = {1543-592X}, doi = {10.1146/annurev-ecolsys-110411-160251}, pages = {429 -- 448}, year = {2012}, abstract = {The seasonal succession of plankton is an annually repeated process of community assembly during which all major external factors and internal interactions shaping communities can be studied. A quarter of a century ago, the state of this understanding was described by the verbal plankton ecology group (PEG) model. It emphasized the role of physical factors, grazing and nutrient limitation for phytoplankton, and the role of food limitation and fish predation for zooplankton. Although originally targeted at lake ecosystems, it was also adopted by marine plankton ecologists. Since then, a suite of ecological interactions previously underestimated in importance have become research foci: overwintering of key organisms, the microbial food web, parasitism, and food quality as a limiting factor and an extended role of higher order predators. A review of the impact of these novel interactions on plankton seasonal succession reveals limited effects on gross seasonal biomass patterns, but strong effects on species replacements.}, language = {en} } @article{RochaGaedkeVasseur2011, author = {Rocha, Marcia R. and Gaedke, Ursula and Vasseur, David A.}, title = {Functionally similar species have similar dynamics}, series = {The journal of ecology}, volume = {99}, journal = {The journal of ecology}, number = {6}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0022-0477}, doi = {10.1111/j.1365-2745.2011.01893.x}, pages = {1453 -- 1459}, year = {2011}, abstract = {1. Improving the mechanistic basis of biodiversity-ecosystem function relationships requires a better understanding of how functional traits drive the dynamics of populations. For example, environmental disturbances or grazing may increase synchronization of functionally similar species, whereas functionally different species may show independent dynamics, because of different responses to the environment. Competition for resources, on the other hand, may yield a wide range of dynamic patterns among competitors and lead functionally similar and different species to display synchronized to compensatory dynamics. The mixed effect of these forces will influence the temporal fluctuations of populations and, thus, the variability of aggregate community properties. 2. To search for a relationship between functional and dynamics similarity, we studied the relationship between functional trait similarity and temporal dynamics similarity for 36 morphotypes of phytoplankton using long-term high-frequency measurements. 3. Our results show that functionally similar morphotypes exhibit dynamics that are more synchronized than those of functionally dissimilar ones. Functionally dissimilar morphotypes predominantly display independent temporal dynamics. This pattern is especially strong when short time-scales are considered. 4. Negative correlations are present among both functionally similar and dissimilar phytoplankton morphotypes, but are rarer and weaker than positive ones over all temporal scales. 5. Synthesis. We demonstrate that diversity in functional traits decreases community variability and ecosystem-level properties by decoupling the dynamics of individual morphotypes.}, language = {en} }