@article{WeingartRailaLuebkeBeckeretal.2018, author = {Weingart, C. and Raila, Jens and L{\"u}bke-Becker, A. and Kershaw, O. and Brunnberg, M. and Kohn, B.}, title = {Calcitriol induced hypercalcemia in a hunting dog with a disseminated Paecilomyces variotii infection}, series = {Schweizer Archiv f{\"u}r Tierheilkunde}, journal = {Schweizer Archiv f{\"u}r Tierheilkunde}, number = {5}, edition = {160}, publisher = {Gesellschaft Schweizer Tier{\"a}rztinnen und Tier{\"a}rzte}, address = {Bern}, issn = {0036-7281}, doi = {10.17236/sat00161}, pages = {313 -- 319}, year = {2018}, abstract = {A 5-year old hunting dog was presented with reduced appetite, weight loss and polyuria/polydipsia. Hematology and clinical chemistry revealed anemia, leukocytosis, increased liver enzymes, hypoalbuminemia and hypercalcemia. The cytological, pathohistological and microbiological examination identified a disseminated infection with the saprophytic mould fungus Paecilomyces variotii in the biopsies of the spleen and a lymph node. Determination of vitamin D metabolites confirmed a calcitriol induced hypercalcemia.}, language = {en} } @article{RailaSchweigertKohn2014, author = {Raila, Jens and Schweigert, Florian J. and Kohn, Barbara}, title = {Relationship between urinary Tamm-Horsfall protein excretion and renal function in dogs with naturally occurring renal disease}, series = {Veterinary clinical pathology}, volume = {43}, journal = {Veterinary clinical pathology}, number = {2}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0275-6382}, doi = {10.1111/vcp.12143}, pages = {261 -- 265}, year = {2014}, abstract = {Background Tamm-Horsfall protein (THP) is physiologically excreted in urine, but little is known about the role of THP in the diagnosis of renal disease in dogs. Objective The aim of this study was to evaluate to which extent naturally occurring renal disease affects the urinary excretion of THP. Methods Dogs were divided into 5 groups according to plasma creatinine concentration, urinary protein-to-creatinine ratio (UP/UC), and exogenous plasma creatinine clearance (P-ClCr) rates: Group A (healthy control dogs; n=8), nonazotemic and nonproteinuric dogs, with P-ClCr rates > 90mL/min/m2; group B (n=25), nonazotemic and nonproteinuric dogs with reduced P-ClCr rates (51-89mL/min/m2); group C (n=7), nonazotemic but proteinuric dogs with P-ClCr rates 53-98mL/min/m2; group D (n=8), azotemic and borderline proteinuric dogs (P-ClCr rates: 22-45mL/min/m2); and group E (n=15), azotemic and proteinuric dogs (not tested for P-ClCr). THP was measured by quantitative Western blot analysis, and the ratio of THP-to-urinary creatinine (THP/UC) was calculated. Results The THP/UC concentrations were not different among dogs of groups A-D, but were reduced in dogs of group E (P<.001). THP/UC correlated negatively with serum creatinine (P<.01) and UP/UC (P<.01), but was not significantly associated with P-ClCr. Conclusions Decreased levels of THP/UC were present in moderately to severely azotemic and proteinuric dogs. This suggests tubular injury in these dogs and that THP might be useful as urinary marker to study the pathogenesis of renal disease.}, language = {en} } @misc{KrupkovaSmoldersWuertzKozaketal.2018, author = {Krupkova, Olga and Smolders, Lucas and W{\"u}rtz-Kozak, Karin and Cook, James and Pozzi, Antonio}, title = {The pathobiology of the meniscus}, series = {Frontiers in veterinary science}, volume = {5}, journal = {Frontiers in veterinary science}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {2297-1769}, doi = {10.3389/fvets.2018.00073}, pages = {15}, year = {2018}, abstract = {Serious knee pain and related disability have an annual prevalence of approximately 25\% on those over the age of 55 years. As curative treatments for the common knee problems are not available to date, knee pathologies typically progress and often lead to osteoarthritis (OA). While the roles that the meniscus plays in knee biomechanics are well characterized, biological mechanisms underlying meniscus pathophysiology and roles in knee pain and OA progression are not fully clear. Experimental treatments for knee disorders that are successful in animal models often produce unsatisfactory results in humans due to species differences or the inability to fully replicate disease progression in experimental animals. The use of animals with spontaneous knee pathologies, such as dogs, can significantly help addressing this issue. As microscopic and macroscopic anatomy of the canine and human menisci are similar, spontaneous meniscal pathologies in canine patients are thought to be highly relevant for translational medicine. However, it is not clear whether the biomolecular mechanisms of pain, degradation of extracellular matrix, and inflammatory responses are species dependent. The aims of this review are (1) to provide an overview of the anatomy, physiology, and pathology of the human and canine meniscus, (2) to compare the known signaling pathways involved in spontaneous meniscus pathology between both species, and (3) to assess the relevance of dogs with spontaneous meniscal pathology as a translational model. Understanding these mechanisms in human and canine meniscus can help to advance diagnostic and therapeutic strategies for painful knee disorders and improve clinical decision making.}, language = {en} } @misc{KrupkovaSmoldersWuertzKozaketal.2018, author = {Krupkova, Olga and Smolders, Lucas and Wuertz-Kozak, Karin and Cook, James and Pozzi, Antonio}, title = {The pathobiology of the meniscus}, series = {Frontiers in Veterinary Science}, journal = {Frontiers in Veterinary Science}, number = {677}, issn = {1866-8364}, doi = {10.25932/publishup-46086}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-460868}, pages = {17}, year = {2018}, abstract = {Serious knee pain and related disability have an annual prevalence of approximately 25\% on those over the age of 55 years. As curative treatments for the common knee problems are not available to date, knee pathologies typically progress and often lead to osteoarthritis (OA). While the roles that the meniscus plays in knee biomechanics are well characterized, biological mechanisms underlying meniscus pathophysiology and roles in knee pain and OA progression are not fully clear. Experimental treatments for knee disorders that are successful in animal models often produce unsatisfactory results in humans due to species differences or the inability to fully replicate disease progression in experimental animals. The use of animals with spontaneous knee pathologies, such as dogs, can significantly help addressing this issue. As microscopic and macroscopic anatomy of the canine and human menisci are similar, spontaneous meniscal pathologies in canine patients are thought to be highly relevant for translational medicine. However, it is not clear whether the biomolecular mechanisms of pain, degradation of extracellular matrix, and inflammatory responses are species dependent. The aims of this review are (1) to provide an overview of the anatomy, physiology, and pathology of the human and canine meniscus, (2) to compare the known signaling pathways involved in spontaneous meniscus pathology between both species, and (3) to assess the relevance of dogs with spontaneous meniscal pathology as a translational model. Understanding these mechanisms in human and canine meniscus can help to advance diagnostic and therapeutic strategies for painful knee disorders and improve clinical decision making.}, language = {en} }