@phdthesis{Schanner2022, author = {Schanner, Maximilian Arthus}, title = {Correlation based modeling of the archeomagnetic field}, doi = {10.25932/publishup-55587}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-555875}, school = {Universit{\"a}t Potsdam}, pages = {vii, 146}, year = {2022}, abstract = {The geomagnetic main field is vital for live on Earth, as it shields our habitat against the solar wind and cosmic rays. It is generated by the geodynamo in the Earth's outer core and has a rich dynamic on various timescales. Global models of the field are used to study the interaction of the field and incoming charged particles, but also to infer core dynamics and to feed numerical simulations of the geodynamo. Modern satellite missions, such as the SWARM or the CHAMP mission, support high resolution reconstructions of the global field. From the 19 th century on, a global network of magnetic observatories has been established. It is growing ever since and global models can be constructed from the data it provides. Geomagnetic field models that extend further back in time rely on indirect observations of the field, i.e. thermoremanent records such as burnt clay or volcanic rocks and sediment records from lakes and seas. These indirect records come with (partially very large) uncertainties, introduced by the complex measurement methods and the dating procedure. Focusing on thermoremanent records only, the aim of this thesis is the development of a new modeling strategy for the global geomagnetic field during the Holocene, which takes the uncertainties into account and produces realistic estimates of the reliability of the model. This aim is approached by first considering snapshot models, in order to address the irregular spatial distribution of the records and the non-linear relation of the indirect observations to the field itself. In a Bayesian setting, a modeling algorithm based on Gaussian process regression is developed and applied to binned data. The modeling algorithm is then extended to the temporal domain and expanded to incorporate dating uncertainties. Finally, the algorithm is sequentialized to deal with numerical challenges arising from the size of the Holocene dataset. The central result of this thesis, including all of the aspects mentioned, is a new global geomagnetic field model. It covers the whole Holocene, back until 12000 BCE, and we call it ArchKalmag14k. When considering the uncertainties that are produced together with the model, it is evident that before 6000 BCE the thermoremanent database is not sufficient to support global models. For times more recent, ArchKalmag14k can be used to analyze features of the field under consideration of posterior uncertainties. The algorithm for generating ArchKalmag14k can be applied to different datasets and is provided to the community as an open source python package.}, language = {en} } @misc{Moehring2021, type = {Master Thesis}, author = {M{\"o}hring, Jan}, title = {Stochastic inversion for core field modeling using satellite data}, doi = {10.25932/publishup-49807}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-498072}, school = {Universit{\"a}t Potsdam}, pages = {vii, 55}, year = {2021}, abstract = {Magnetfeldmodellierung mit Kugelfl{\"a}chenfunktionen basiert auf der Inversion nach hunderten bis tausenden von Parametern. Dieses hochdimensionale Problem kann grunds{\"a}tzlich als ein Optimierungsproblem formuliert werden, bei dem ein globales Minimum einer gewissen Zielfunktion berechnet werden soll. Um dieses Problem zu l{\"o}sen, gibt es eine Reihe bekannter Ans{\"a}tze, dazu z{\"a}hlen etwa gradientenbasierte Verfahren oder die Methode der kleinsten Quadrate und deren Varianten. Jede dieser Methoden hat verschiedene Vor- und Nachteile, beispielsweise bez{\"u}glich der Anwendbarkeit auf nicht-differenzierbare Funktionen oder der Laufzeit zugeh{\"o}riger Algorithmen. In dieser Arbeit verfolgen wir das Ziel, einen Algorithmus zu finden, der schneller als die etablierten Verfahren ist und sich auch f{\"u}r nichtlineare Probleme anwenden l{\"a}sst. Solche nichtlinearen Probleme treten beispielsweise bei der Absch{\"a}tzung von Euler-Winkeln oder bei der Verwendung der robusteren L_1-Norm auf. Dazu untersuchen wir die Anwendbarkeit stochastischer Optimierungsverfahren aus der CMAES-Familie auf die Modellierung des geomagnetischen Feldes des Erdkerns. Es werden sowohl die Grundlagen der Kernfeldmodellierung und deren Parametrisierung anhand einiger Beispiele aus der Literatur besprochen, als auch die theoretischen Hintergr{\"u}nde der stochastischen Verfahren gegeben. Ein CMAES-Algorithmus wurde erfolgreich angewendet, um Daten der Swarm-Satellitenmission zu invertieren und daraus das Magnetfeldmodell EvoMag abzuleiten. EvoMag zeigt gute {\"U}bereinstimmung mit etablierten Modellen, sowie mit Observatoriumsdaten aus Niemegk. Wir thematisieren einige beobachtete Schwierigkeiten und pr{\"a}sentieren und diskutieren die Ergebnisse unserer Modellierung.}, language = {en} }