@book{SchwarzerWeissSaoumiKitteletal.2023, author = {Schwarzer, Ingo and Weiß-Saoumi, Said and Kittel, Roland and Friedrich, Tobias and Kaynak, Koraltan and Durak, Cemil and Isbarn, Andreas and Diestel, J{\"o}rg and Knittel, Jens and Franz, Marquart and Morra, Carlos and Stahnke, Susanne and Braband, Jens and Dittmann, Johannes and Griebel, Stephan and Krampf, Andreas and Link, Martin and M{\"u}ller, Matthias and Radestock, Jens and Strub, Leo and Bleeke, Kai and Jehl, Leander and Kapitza, R{\"u}diger and Messadi, Ines and Schmidt, Stefan and Schwarz-R{\"u}sch, Signe and Pirl, Lukas and Schmid, Robert and Friedenberger, Dirk and Beilharz, Jossekin Jakob and Boockmeyer, Arne and Polze, Andreas and R{\"o}hrig, Ralf and Sch{\"a}be, Hendrik and Thiermann, Ricky}, title = {RailChain}, number = {152}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-550-7}, issn = {1613-5652}, doi = {10.25932/publishup-57740}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-577409}, publisher = {Universit{\"a}t Potsdam}, pages = {140}, year = {2023}, abstract = {The RailChain project designed, implemented, and experimentally evaluated a juridical recorder that is based on a distributed consensus protocol. That juridical blockchain recorder has been realized as distributed ledger on board the advanced TrainLab (ICE-TD 605 017) of Deutsche Bahn. For the project, a consortium consisting of DB Systel, Siemens, Siemens Mobility, the Hasso Plattner Institute for Digital Engineering, Technische Universit{\"a}t Braunschweig, T{\"U}V Rheinland InterTraffic, and Spherity has been formed. These partners not only concentrated competencies in railway operation, computer science, regulation, and approval, but also combined experiences from industry, research from academia, and enthusiasm from startups. Distributed ledger technologies (DLTs) define distributed databases and express a digital protocol for transactions between business partners without the need for a trusted intermediary. The implementation of a blockchain with real-time requirements for the local network of a railway system (e.g., interlocking or train) allows to log data in the distributed system verifiably in real-time. For this, railway-specific assumptions can be leveraged to make modifications to standard blockchains protocols. EULYNX and OCORA (Open CCS On-board Reference Architecture) are parts of a future European reference architecture for control command and signalling (CCS, Reference CCS Architecture - RCA). Both architectural concepts outline heterogeneous IT systems with components from multiple manufacturers. Such systems introduce novel challenges for the approved and safety-relevant CCS of railways which were considered neither for road-side nor for on-board systems so far. Logging implementations, such as the common juridical recorder on vehicles, can no longer be realized as a central component of a single manufacturer. All centralized approaches are in question. The research project RailChain is funded by the mFUND program and gives practical evidence that distributed consensus protocols are a proper means to immutably (for legal purposes) store state information of many system components from multiple manufacturers. The results of RailChain have been published, prototypically implemented, and experimentally evaluated in large-scale field tests on the advanced TrainLab. At the same time, the project showed how RailChain can be integrated into the road-side and on-board architecture given by OCORA and EULYNX. Logged data can now be analysed sooner and also their trustworthiness is being increased. This enables, e.g., auditable predictive maintenance, because it is ensured that data is authentic and unmodified at any point in time.}, language = {en} } @phdthesis{Schmeiss2019, author = {Schmeiss, Jessica}, title = {Designing value architectures for emerging technologies}, school = {Universit{\"a}t Potsdam}, pages = {135}, year = {2019}, abstract = {The business model has emerged as a construct to understand how firms drive innovation through emerging technologies. It is defined as the 'architecture of the firm's value creation, delivery and appropriation mechanisms' (Foss \& Saebi, 2018, p. 5). The architecture is characterized by complex functional interrelations between activities that are conducted by various actors, some within and some outside of the firm. In other words, a firm's value architecture is embedded within a wider system of actors that all contribute to the output of the value architecture. The question of what drives innovation within this system and how the firm can shape and navigate this innovation is an essential question within innova- tion management research. This dissertation is a compendium of four individual research articles that examine how the design of a firm's value architecture can fa- cilitate system-wide innovation in the context of Artificial Intelligence and Block- chain Technology. The first article studies how firms use Blockchain Technology to design a governance infrastructure that enables innovation within a platform ecosystem. The findings propose a framework for blockchain-enabled platform ecosystems that address the essential problem of opening the platform to allow for innovation while also ensuring that all actors get to capture their share of the value. The second article analyzes how German Artificial Intelligence startups design their business models. It identifies three distinct types of startup with dif- ferent underlying business models. The third article aims to understand the role of a firm's value architecture during the socio-technical transition process of Arti- ficial Intelligence. It identifies three distinct ways in which Artificial Intelligence startups create a shared understanding of the technology. The last article exam- ines how corporate venture capital units configure value-adding services for their venture portfolios. It derives a taxonomy of different corporate venture capital types, driven by different strategic motivations. Ultimately, this dissertation provides novel empirical insights into how a firm's value architecture determines it's role within a wider system of actors and how that role enables the firm to facilitate innovation. In that way, it contributes to both business model and innovation management literature.}, language = {en} } @article{MendlingWebervanderAalstetal.2018, author = {Mendling, Jan and Weber, Ingo and van der Aalst, Wil and Brocke, Jan Vom and Cabanillas, Cristina and Daniel, Florian and Debois, Soren and Di Ciccio, Claudio and Dumas, Marlon and Dustdar, Schahram and Gal, Avigdor and Garcia-Banuelos, Luciano and Governatori, Guido and Hull, Richard and La Rosa, Marcello and Leopold, Henrik and Leymann, Frank and Recker, Jan and Reichert, Manfred and Reijers, Hajo A. and Rinderle-Ma, Stefanie and Solti, Andreas and Rosemann, Michael and Schulte, Stefan and Singh, Munindar P. and Slaats, Tijs and Staples, Mark and Weber, Barbara and Weidlich, Matthias and Weske, Mathias and Xu, Xiwei and Zhu, Liming}, title = {Blockchains for Business Process Management}, series = {ACM Transactions on Management Information Systems}, volume = {9}, journal = {ACM Transactions on Management Information Systems}, number = {1}, publisher = {Association for Computing Machinery}, address = {New York}, issn = {2158-656X}, doi = {10.1145/3183367}, pages = {1 -- 16}, year = {2018}, abstract = {Blockchain technology offers a sizable promise to rethink the way interorganizational business processes are managed because of its potential to realize execution without a central party serving as a single point of trust (and failure). To stimulate research on this promise and the limits thereof, in this article, we outline the challenges and opportunities of blockchain for business process management (BPM). We first reflect how blockchains could be used in the context of the established BPM lifecycle and second how they might become relevant beyond. We conclude our discourse with a summary of seven research directions for investigating the application of blockchain technology in the context of BPM.}, language = {en} } @phdthesis{Ladleif2021, author = {Ladleif, Jan}, title = {Enforceability aspects of smart contracts on blockchain networks}, doi = {10.25932/publishup-51908}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-519088}, school = {Universit{\"a}t Potsdam}, pages = {xix, 152}, year = {2021}, abstract = {Smart contracts promise to reform the legal domain by automating clerical and procedural work, and minimizing the risk of fraud and manipulation. Their core idea is to draft contract documents in a way which allows machines to process them, to grasp the operational and non-operational parts of the underlying legal agreements, and to use tamper-proof code execution alongside established judicial systems to enforce their terms. The implementation of smart contracts has been largely limited by the lack of an adequate technological foundation which does not place an undue amount of trust in any contract party or external entity. Only recently did the emergence of Decentralized Applications (DApps) change this: Stored and executed via transactions on novel distributed ledger and blockchain networks, powered by complex integrity and consensus protocols, DApps grant secure computation and immutable data storage while at the same time eliminating virtually all assumptions of trust. However, research on how to effectively capture, deploy, and most of all enforce smart contracts with DApps in mind is still in its infancy. Starting from the initial expression of a smart contract's intent and logic, to the operation of concrete instances in practical environments, to the limits of automatic enforcement---many challenges remain to be solved before a widespread use and acceptance of smart contracts can be achieved. This thesis proposes a model-driven smart contract management approach to tackle some of these issues. A metamodel and semantics of smart contracts are presented, containing concepts such as legal relations, autonomous and non-autonomous actions, and their interplay. Guided by the metamodel, the notion and a system architecture of a Smart Contract Management System (SCMS) is introduced, which facilitates smart contracts in all phases of their lifecycle. Relying on DApps in heterogeneous multi-chain environments, the SCMS approach is evaluated by a proof-of-concept implementation showing both its feasibility and its limitations. Further, two specific enforceability issues are explored in detail: The performance of fully autonomous tamper-proof behavior with external off-chain dependencies and the evaluation of temporal constraints within DApps, both of which are essential for smart contracts but challenging to support in the restricted transaction-driven and closed environment of blockchain networks. Various strategies of implementing or emulating these capabilities, which are ultimately applicable to all kinds of DApp projects independent of smart contracts, are presented and evaluated.}, language = {en} } @misc{HaarmannBatoulisNikajetal.2018, author = {Haarmann, Stephan and Batoulis, Kimon and Nikaj, Adriatik and Weske, Mathias}, title = {DMN Decision Execution on the Ethereum Blockchain}, series = {Advanced Information Systems Engineering, CAISE 2018}, volume = {10816}, journal = {Advanced Information Systems Engineering, CAISE 2018}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-91563-0}, issn = {0302-9743}, doi = {10.1007/978-3-319-91563-0_20}, pages = {327 -- 341}, year = {2018}, abstract = {Recently blockchain technology has been introduced to execute interacting business processes in a secure and transparent way. While the foundations for process enactment on blockchain have been researched, the execution of decisions on blockchain has not been addressed yet. In this paper we argue that decisions are an essential aspect of interacting business processes, and, therefore, also need to be executed on blockchain. The immutable representation of decision logic can be used by the interacting processes, so that decision taking will be more secure, more transparent, and better auditable. The approach is based on a mapping of the DMN language S-FEEL to Solidity code to be run on the Ethereum blockchain. The work is evaluated by a proof-of-concept prototype and an empirical cost evaluation.}, language = {en} } @inproceedings{GruenerMuehleGayvoronskayaetal.2019, author = {Gr{\"u}ner, Andreas and M{\"u}hle, Alexander and Gayvoronskaya, Tatiana and Meinel, Christoph}, title = {A quantifiable trustmModel for Blockchain-based identity management}, series = {IEEE 2018 International Congress on Cybermatics / 2018 IEEE Conferences on Internet of Things, Green Computing and Communications, cyber, physical and Social Computing, Smart Data, Blockchain, Computer and Information Technology}, booktitle = {IEEE 2018 International Congress on Cybermatics / 2018 IEEE Conferences on Internet of Things, Green Computing and Communications, cyber, physical and Social Computing, Smart Data, Blockchain, Computer and Information Technology}, publisher = {IEEE}, address = {New York}, isbn = {978-1-5386-7975-3}, doi = {10.1109/Cybermatics_2018.2018.00250}, pages = {1475 -- 1482}, year = {2019}, language = {en} } @inproceedings{EigelshovenUllrichBender2020, author = {Eigelshoven, Felix and Ullrich, Andr{\´e} and Bender, Benedict}, title = {Public blockchain}, series = {Proceedings of the 28th European Conference on Information Systems (ECIS)- A Virtual AIS Conference}, booktitle = {Proceedings of the 28th European Conference on Information Systems (ECIS)- A Virtual AIS Conference}, pages = {1 -- 19}, year = {2020}, abstract = {Blockchain has the potential to change business transactions to a major extent. Thereby, underlying consensus algorithms are the core mechanism to achieve consistency in distributed infrastructures. Their application aims for transparency and accountability in societal transactions. As a result of missing reviews holistically covering consensus algorithms, we aim to (1) identify prevalent consensus algorithms for public blockchains, and (2) address the resource perspective with a sustainability consideration (whereby we address the three spheres of sustainability). Our systematic literature review identified 33 different consensus algorithms for public blockchains. Our contribution is twofold: first, we provide a systematic summary of consensus algorithms for public blockchains derived from the scientific literature as well as real-world applications and systemize them according to their research focus; second, we assess the sustainability of consensus algorithms using a representative sample and thereby highlight the gaps in literature to address the holistic sustainability of consensus algorithms.}, language = {en} } @article{EigelshovenGronauUllrich2020, author = {Eigelshoven, Felix and Gronau, Norbert and Ullrich, Andr{\´e}}, title = {Konsens-Algorithmen von Blockchain}, series = {Industrie 4.0 Management : Gegenwart und Zukunft industrieller Gesch{\"a}ftsprozesse}, volume = {36}, journal = {Industrie 4.0 Management : Gegenwart und Zukunft industrieller Gesch{\"a}ftsprozesse}, number = {1}, publisher = {Gito}, address = {Berlin}, issn = {2364-9208}, doi = {10.30844/I40M_20-1_S29-32}, pages = {29 -- 32}, year = {2020}, abstract = {Neben dem enormen Kursanstieg des Bitcoins in den Jahren 2017/2018, stieg im gleichen Maß auch die ben{\"o}tigte Rechenleistung und der damit verbundene Elektrizit{\"a}tsbedarf, um Bl{\"o}cke innerhalb der Bitcoin-Blockchain zu verifizieren. Aus diesem Problem ableitend besch{\"a}ftigt sich dieser Beitrag mit der Fragestellung, welchen Beitrag unterschiedliche Konsens-Algorithmen innerhalb einer Blockchain zur Nachhaltigkeit liefern. Im Ergebnis liegt ein {\"U}berblick {\"u}ber die meist genutzten Konsens-Algorithmen und deren Beitrag zur Nachhaltigkeit vor.}, language = {de} } @misc{BrinkmannHeine2019, author = {Brinkmann, Maik and Heine, Moreen}, title = {Can Blockchain Leverage for New Public Governance?}, series = {Proceedings of the 12th International Conference on Theory and Practice of Electronic Governance}, journal = {Proceedings of the 12th International Conference on Theory and Practice of Electronic Governance}, publisher = {Association for Computing Machinery}, address = {New York}, isbn = {978-1-4503-6644-1}, doi = {10.1145/3326365.3326409}, pages = {338 -- 341}, year = {2019}, abstract = {New Public Governance (NPG) as a paradigm for collaborative forms of public service delivery and Blockchain governance are trending topics for researchers and practitioners alike. Thus far, each topic has, on the whole, been discussed separately. This paper presents the preliminary results of ongoing research which aims to shed light on the more concrete benefits of Blockchain for the purpose of NPG. For the first time, a conceptual analysis is conducted on process level to spot benefits and limitations of Blockchain-based governance. Per process element, Blockchain key characteristics are mapped to functional aspects of NPG from a governance perspective. The preliminary results show that Blockchain offers valuable support for governments seeking methods to effectively coordinate co-producing networks. However, the extent of benefits of Blockchain varies across the process elements. It becomes evident that there is a need for off-chain processes. It is, therefore, argued in favour of intensifying research on off-chain governance processes to better understand the implications for and influences on on-chain governance.}, language = {en} } @phdthesis{Brinkmann2022, author = {Brinkmann, Maik}, title = {Towards a joint public service delivery? The effects of blockchain on the relationship of public administrations with external stakeholders}, doi = {10.25932/publishup-56449}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-564499}, school = {Universit{\"a}t Potsdam}, pages = {X, 126, CCLXVIII}, year = {2022}, abstract = {Public administrations confront fundamental challenges, including globalization, digitalization, and an eroding level of trust from society. By developing joint public service delivery with other stakeholders, public administrations can respond to these challenges. This increases the importance of inter-organizational governance—a development often referred to as New Public Governance, which to date has not been realized because public administrations focus on intra-organizational practices and follow the traditional "governmental chain." E-government initiatives, which can lead to high levels of interconnected public services, are currently perceived as insufficient to meet this goal. They are not designed holistically and merely affect the interactions of public and non-public stakeholders. A fundamental shift toward a joint public service delivery would require scrutiny of established processes, roles, and interactions between stakeholders. Various scientists and practitioners within the public sector assume that the use of blockchain institutional technology could fundamentally change the relationship between public and non-public stakeholders. At first glance, inter-organizational, joint public service delivery could benefit from the use of blockchain. This dissertation aims to shed light on this widespread assumption. Hence, the objective of this dissertation is to substantiate the effect of blockchain on the relationship between public administrations and non-public stakeholders. This objective is pursued by defining three major areas of interest. First, this dissertation strives to answer the question of whether or not blockchain is suited to enable New Public Governance and to identify instances where blockchain may not be the proper solution. The second area aims to understand empirically the status quo of existing blockchain implementations in the public sector and whether they comply with the major theoretical conclusions. The third area investigates the changing role of public administrations, as the blockchain ecosystem can significantly increase the number of stakeholders. Corresponding research is conducted to provide insights into these areas, for example, combining theoretical concepts with empirical actualities, conducting interviews with subject matter experts and key stakeholders of leading blockchain implementations, and performing a comprehensive stakeholder analysis, followed by visualization of its results. The results of this dissertation demonstrate that blockchain can support New Public Governance in many ways while having a minor impact on certain aspects (e.g., decentralized control), which account for this public service paradigm. Furthermore, the existing projects indicate changes to relationships between public administrations and non-public stakeholders, although not necessarily the fundamental shift proposed by New Public Governance. Lastly, the results suggest that power relations are shifting, including the decreasing influence of public administrations within the blockchain ecosystem. The results raise questions about the governance models and regulations required to support mature solutions and the further diffusion of blockchain for public service delivery.}, language = {en} }