@article{SeifertdeCastroMarquartetal.2014, author = {Seifert, Linda I. and de Castro, Francisco and Marquart, Arnim and Gaedke, Ursula and Weithoff, Guntram and Vos, Matthijs}, title = {Heated relations: temperature-mediated shifts in consumption across trophic levels}, series = {PLoS one}, volume = {9}, journal = {PLoS one}, number = {5}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0095046}, pages = {7}, year = {2014}, abstract = {A rise in temperature will intensify the feeding links involving ectotherms in food webs. However, it is unclear how the effects will quantitatively differ between the plant-herbivore and herbivore-carnivore interface. To test how warming could differentially affect rates of herbivory and carnivory, we studied trophic interaction strength in a food chain comprised of green algae, herbivorous rotifers and carnivorous rotifers at 10, 15, 20 and 25 degrees C. We found significant warming-induced changes in feeding by both herbivorous and carnivorous rotifers, but these responses occurred at different parts of the entire temperature gradient. The strongest response of the per capita herbivore's ingestion rate occurred due to an increase in temperature from 15 to 20 degrees C (1.9 fold: from 834 to 1611 algal cells per h(-1)) and of the per capita carnivore's ingestion rate from 20 to 25 degrees C (1.6 fold: from 1.5 to 2.5 prey h(-1)). Handling time, an important component of a consumer's functional response, significantly decreased from 15 to 20 degrees C in herbivorous rotifers. In contrast, it decreased from 20 to 25 degrees C in carnivorous rotifers. Attack rates significantly and strongly increased from 10 to 25 degrees C in the herbivorous animals, but not at all in the carnivores. Our results exemplify how the relative forces of top-down control exerted by herbivores and carnivores may strongly shift under global warming. But warming, and its magnitude, are not the only issue: If our results would prove to be representative, shifts in ectotherm interactions will quantitatively differ when a 5 degrees C increase starts out from a low, intermediate or high initial temperature. This would imply that warming could have different effects on the relative forces of carnivory and herbivory in habitats differing in average temperature, as would exist at different altitudes and latitudes.}, language = {en} } @article{SeifertWeithoffVos2015, author = {Seifert, Linda I. and Weithoff, Guntram and Vos, Matthijs}, title = {Extreme heat changes post-heat wave community reassembly}, series = {Ecology and evolution}, volume = {5}, journal = {Ecology and evolution}, number = {11}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {2045-7758}, doi = {10.1002/ece3.1490}, pages = {2140 -- 2148}, year = {2015}, abstract = {Climate forecasts project further increases in extremely high-temperature events. These present threats to biodiversity, as they promote population declines and local species extinctions. This implies that ecological communities will need to rely more strongly on recovery processes, such as recolonization from a meta-community context. It is poorly understood how differences in extreme event intensity change the outcome of subsequent community reassembly and if such extremes modify the biotic environment in ways that would prevent the successful re-establishment of lost species. We studied replicated aquatic communities consisting of algae and herbivorous rotifers in a design that involved a control and two different heat wave intensity treatments (29 degrees C and 39 degrees C). Animal species that suffered heat-induced extinction were subsequently re-introduced at the same time and density, in each of the two treatments. The 39 degrees C treatment led to community closure in all replicates, meaning that a previously successful herbivore species could not re-establish itself in the postheat wave community. In contrast, such closure never occurred after a 29 degrees C event. Heat wave intensity determined the number of herbivore extinctions and strongly affected algal relative abundances. Re-introduced herbivore species were thus confronted with significantly different food environments. This ecological legacy generated by heat wave intensity led to differences in the failure or success of herbivore species re-introductions. Reassembly was significantly more variable, and hence less predictable, after an extreme heat wave, and was more canalized after a moderate one. Our results pertain to relatively simple communities, but they suggest that ecological legacies introduced by extremely high-temperature events may change subsequent ecological recovery and even prevent the successful re-establishment of lost species. Knowing the processes promoting and preventing ecological recovery is crucial to the success of species re-introduction programs and to our ability to restore ecosystems damaged by environmental extremes.}, language = {en} }