@article{SpijkermanGarciaMendozaMatthijsetal.2004, author = {Spijkerman, Elly and Garcia-Mendoza, E. and Matthijs, H. C. P. and Van Hunnik, E. and Coesel, P. F. M.}, title = {Negative effects of P-buffering and pH on photosynthetic activity of planktonic desmid species}, year = {2004}, abstract = {The photosynthetic activities of three planktonic desmid species (Staurastrum brachiatum, Staurodesmus cuspidatus var. curvatus, and Staurastrum chaetoceras) were compared after adaptation to medium enriched with either a 20 mM Na+- phosphate (P) or HEPES buffer. Incubations up to 2 d were carried out at pH 6 or 8 under normal air or air enriched with 5 \% CO2. Gross maximum photosynthetic rate (Pmax) and growth rate were decreased in both S. brachiatum and Std. cuspidatus at higher pH when using the HEPES buffer and this effect was independent of CO2 concentration, indicating that pH had an inhibitory effect on photosynthesis and growth in these species. The P-buffer at pH 8 caused a large decrease in Pmax and quantum yield for charge separation in photosystem 2 (PS2), compared to HEPES-buffered algae. This effect was very large in both S. brachiatum and Std. cuspidatus, two species characteristic of soft water lakes, but also significant in S. chaetoceras, a species dominant in eutrophic, hard water lakes. The decreased Pmax in P- buffer could not be related to a significant increase in cellular P content known to be responsible for inhibition in isolated chloroplasts. Experiments at pH 6 and 8 showed that two conditions, high pH and high Na+ concentration, both contributed to the decreased Pmax and quantum yield in the desmids. Effects of a P-buffer were less pronounced by using K+-P buffer. The use of P-buffer at pH 8 possibly resulted in high irradiance stress in all species, indicated by damage in the PS2 core complex. In the soft water species pH 8 resulted in increased non-photochemical quenching together with a high de-epoxidation state of the xanthophyll cycle pigments.}, language = {en} } @article{SpijkermanMaberlyCoesel2005, author = {Spijkerman, Elly and Maberly, Stephen C. and Coesel, P. F. M.}, title = {Carbon acquisition mechanisms by planktonic desmids and their link to ecological distribution}, issn = {0008-4026}, year = {2005}, abstract = {To test if different inorganic carbon (C-i) uptake mechanisms underlie the ecological distribution pattern of planktonic desmids, we performed pH-drift experiments with 12 strains, belonging to seven species, originating from lakes of different pH. Staurastrum brachiatum Ralfs and Staurodesmus cuspidatus (Ralfs) Teil. var. curvatus (W. West) Teil., species confined to acidic, soft water habitats, showed remarkably different behavior in the pH drift experiments: S. brachiatum appeared to use CO2 only, whereas Staurodesmus cuspidatus appeared to use HCO3- as well. Staurastrum chaetoceras (Schr.) Smith and Staurastrum planctonicum Teil, species well-known for their abundant occurrence in alkaline waters, were the most effective at using HCO3-. Other species, to be encountered in both slightly acidic and slightly alkaline waters, took an intermediate position. Experiments using specific inhibitors suggested that Cosmarium abbreviatum Rac. var. planctonicum W. \& G.S. West and S. brachiatum use CO2 by an active CO2 uptake mechanism, whereas S. chaetoceras and Staurodesmus cuspidatus showed an active HCO3- uptake pattern. Most likely, these active uptake mechanisms make use of H+-ATPase, as none of the desmids expressed significant carbonic anhydrase activity. A series of strains of Staurastrum planctonicum isolated from different habitats, all clustered in between the species using HCO3-, but no further differentiation was observed. Therefore, desmids cannot be simply characterized as exclusive CO2 users, and the ecological distribution pattern of a desmid species does not unequivocally link to a certain C-i uptake mechanism. Nevertheless, there does appear to be a general ecological link between a species' C-i uptake mechanism and its ecological distribution}, language = {en} }