@misc{MuellerSchulzLauterbachetal.2016, author = {M{\"u}ller, Christina M. and Schulz, Benjamin and Lauterbach, Daniel and Ristow, Michael and Wissemann, Volker and Gemeinholzer, Birgit}, title = {Geropogon hybridus (L.) Sch.Bip. (Asteraceae) exhibits micro-geographic genetic divergence at ecological range limits along a steep precipitation gradient}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {832}, issn = {1866-8372}, doi = {10.25932/publishup-42706}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427061}, pages = {16}, year = {2016}, abstract = {We analyzed the population genetic pattern of 12 fragmented Geropogon hybridus ecological range edge populations in Israel along a steep precipitation gradient. In the investigation area (45 x 20 km(2)), the annual mean precipitation changes rapidly from 450 mm in the north (Mediterranean-influenced climate zone) to 300 mm in the south (semiarid climate zone) without significant temperature changes. Our analysis (91 individuals, 12 populations, 123 polymorphic loci) revealed strongly structured populations (AMOVA I broken vertical bar(ST) = 0.35; P < 0.001); however, differentiation did not change gradually toward range edge. IBD was significant (Mantel test r = 0.81; P = 0.001) and derived from sharply divided groups between the northernmost populations and the others further south, due to dispersal or environmental limitations. This was corroborated by the PCA and STRUCTURE analyses. IBD and IBE were significant despite the micro-geographic scale of the study area, which indicates that reduced precipitation toward range edge leads to population genetic divergence. However, this pattern diminished when the hypothesized gene flow barrier was taken into account. Applying the spatial analysis method revealed 11 outlier loci that were correlated to annual precipitation and, moreover, were indicative for putative precipitation-related adaptation (BAYESCAN, MCHEZA). The results suggest that even on micro-geographic scales, environmental factors play prominent roles in population divergence, genetic drift, and directional selection. The pattern is typical for strong environmental gradients, e.g., at species range edges and ecological limits, and if gene flow barriers and mosaic-like structures of fragmented habitats hamper dispersal.}, language = {en} }