@article{TrauthBookhagenMarwanetal.2003, author = {Trauth, Martin H. and Bookhagen, Bodo and Marwan, Norbert and Strecker, Manfred}, title = {Multiple landslide clusters record quaternary climate changes in the northwestern Argentine andes}, year = {2003}, abstract = {The chronology of multiple landslide deposits and related lake sediments in the semi-arid eastern Argentine Cordillera suggests that major mass movements cluster in two time periods during the Quaternary, i.e. between 40 and 25 and after 5 14C kyr BP. These clusters may correspond to the Minchin (maximum at around 28-27 14C kyr BP) and Titicaca wet periods (after 3.9 14C kyr BP). The more humid conditions apparently caused enhanced landsliding in this environment. In contrast, no landslide-related damming and associated lake sediments occurred during the Coipasa (11.5- 10 14C yr BP) and Tauca wet periods (14.5-11 14C yr BP). The two clusters at 40-25 and after 5 14C kyr BP may correspond to periods where the El Ni{\~n}o-Southern Oscillation (ENSO) and Tropical Atlantic Sea Surface Temperature Variability (TAV) were active. This, however, was not the case during the Coipasa and Tauca wet periods. Lake-balance modelling of a landslide-dammed lake suggests a 10-15\% increase in precipitation and a 3-4 ° C decrease in temperature at ~30 14C kyr BP as compared to the present. In addition, time-series analysis reveals a strong ENSO and TAV during that time. The landslide clusters in northwestern Argentina are therefore best explained by periods of more humid and more variable climates.}, language = {en} } @article{BergnerTrauthBookhagen2003, author = {Bergner, Andreas G. N. and Trauth, Martin H. and Bookhagen, Bodo}, title = {Magnitude of precipitation : evaporation changes in the Naivasha Basin (Kenya) during the last 150 kyrs}, year = {2003}, abstract = {We modeled the two most extreme highstands of Lake Naivasha during the last 175 k.y. to estimate potential precipitation/ evaporation changes in this basin. In a first step, the bathymetry of the paleolakes at f135 and 9 k.y. BP was reconstructed from sediment cores and surface outcrops. Second, we modeled the paleohydrologic budget during the highstands using a simplified coupled energy mass-balance model. Our results show that the hydrologic and hence the climate conditions at f135 and 9 k.y. BP were similar, but significantly different from today. The main difference is a f15\% higher value in precipitation compared to the present. An adaptation and migration of vegetation in the cause of climate changes would result in a f30\% increase in precipitation. The most likely cause for such a wetter climate at f135 and 9 k.y. BP is a more intense intertropical convergence and increased precipitation in East Africa.}, language = {en} } @article{TrauthBookhagenMuelleretal.2003, author = {Trauth, Martin H. and Bookhagen, Bodo and Mueller, Andreas and Strecker, Manfred}, title = {Erosion and climate change in the Santa Maria Basin, NW Argentina during the last 40,000 yrs}, year = {2003}, abstract = {Present erosion and sediment flux in the semi-arid intramontane Santa Maria Basin, NW Argentina are compared with conditions during a period of wetter and more variable climate at about 30,000 14C yrs ago. The results suggest that the influence of climate change on the overall erosional sediment budget is significant, mainly because of a change in the erosion regime coupled with an increase in mass movements. The most effective mechanism to increase landslide activity in this environment is a highly variable climate on inter-annual timescales. In contrast, Quaternary changes in erosional budgets due to variations in moisture regimes is small in the Santa Maria Basin. Since the magnitude of a potential increase in background erosion as well as enhanced landsliding is smaller than typical levels of uncertainty of erosional budgets for such large basins, it is not likely that climate-driven erosional unloading can influence tectonic style and rates in this semi-arid environment on time scales of several 103 to 104 years.}, language = {en} } @article{TrauthDeinoBergneretal.2003, author = {Trauth, Martin H. and Deino, Alan and Bergner, Andreas G. N. and Strecker, Manfred}, title = {East African climate change and orbital forcing during the last 175 kyr BP}, year = {2003}, abstract = {Variations in the temporal and spatial distribution of solar radiation caused by orbital changes provide a partial explanation for the observed long-term fluctuations in African lake levels. The understanding of such relationships is essential for designing climate-prediction models for the tropics. Our assessment of the nature and timing of East African climate change is based on lake-level fluctuations of Lake Naivasha in the Central Kenya Rift (0°55'S 36°20'E), inferred from sediment characteristics, diatoms, authigenic mineral assemblages and 17 single-crystal 40Ar/39Ar age determinations. Assuming that these fluctuations reflect climate changes, the Lake Naivasha record demonstrates that periods of increased humidity in East Africa mainly followed maximum equatorial solar radiation in March or September. Interestingly, the most dramatic change in the Naivasha Basin occurred as early as 146 kyr BP and the highest lake level was recorded at about 139 to 133 kyr BP. This is consistent with other well-dated low-latitude climate records, but does not correspond to peaks in Northern Hemisphere summer insolation as the trigger for the ice- age cycles. The Naivasha record therefore provides evidence for low-latitude forcing of the ice-age climate cycles.}, language = {en} } @article{MarwanTrauthVuilleetal.2003, author = {Marwan, Norbert and Trauth, Martin H. and Vuille, Mathias and Kurths, J{\"u}rgen}, title = {Comparing modern and Pleistocene ENSO-like influences in NW Argentina using nonlinear time series analysis methods}, year = {2003}, abstract = {Higher variability in rainfall and river discharge could be of major importance in landslide generation in the north-western Argentine Andes. Annual layered (varved) deposits of a landslide dammed lake in the Santa Maria Basin (26°S, 66°W) with an age of 30,000 14C years provide an archive of precipitation variability during this time. The comparison of these data with present-day rainfall observations tests the hypothesis that increased rainfall variability played a major role in landslide generation. A potential cause of such variability is the El Ni{\~n}o/ Southern Oscillation (ENSO). The causal link between ENSO and local rainfall is quantified by using a new method of nonlinear data analysis, the quantitative analysis of cross recurrence plots (CRP). This method seeks similarities in the dynamics of two different processes, such as an ocean-atmosphere oscillation and local rainfall. Our analysis reveals significant similarities in the statistics of both modern and palaeo-precipitation data. The similarities in the data suggest that an ENSO-like influence on local rainfall was present at around 30,000 14C years ago. Increased rainfall, which was inferred from a lake balance modeling in a previous study, together with ENSO-like cyclicities could help to explain the clustering of landslides at around 30,000 14C years ago.}, language = {en} }