@article{ArrowsmithCrosbyKorzhenkovetal.2017, author = {Arrowsmith, J. Ramon and Crosby, Christopher J. and Korzhenkov, Andrey M. and Mamyrov, Ernest and Povolotskaya, Irina and Guralnik, Benny and Landgraf, Angela}, title = {Surface rupture of the 1911 Kebin (Chon-Kemin) earthquake, Northern Tien Shan, Kyrgyzstan}, series = {Seismicity, fault rupture and earthquake hazards in slowly deforming regions}, volume = {432}, journal = {Seismicity, fault rupture and earthquake hazards in slowly deforming regions}, publisher = {The Geological Society}, address = {London}, isbn = {978-1-86239-745-3}, issn = {0305-8719}, doi = {10.1144/SP432.10}, pages = {233 -- 253}, year = {2017}, abstract = {The 1911 Chon-Kemin (Kebin) earthquake culminated c. 30 years of remarkable earthquakes in the northern Tien Shan (Kyrgyzstan and Kazakhstan). Building on prior mapping of the event, we traced its rupture in the field and measured more than 50 offset landforms. Cumulative fault rupture length is >155-195 km along 13 fault patches comprising six sections. The patches are separated by changes of dip magnitude or dip direction, or by 4-10 km-wide stepovers. One <40 km section overlaps and is parallel to the main north-dipping rupture but is 7 km north and dips opposite (south). Both ends of the rupture are along mountain front thrust faults demonstrating late Quaternary activity. We computed the moment from each fault patch using the surface fault traces, dip inferred from the traces, 20 km seismogenic thickness, rigidity of 3.3 x 10(10) N m(-2) and dip slip converted from our observations of the largely reverse sense of motion vertical offsets. The discontinuous patches with c. 3-4 m average slip and peak slip of <14 m yield a seismic moment of 4.6 x 10(20) Nm (M-w 7.78) to 7.4 x 10(20) Nm (M-w 7.91). The majority of moment was released along the inner eastern rupture segments. This geological moment is lower by a factor of 1.5 from that determined from teleseismic data.}, language = {en} } @article{KruegerKulikovaLandgraf2017, author = {Kr{\"u}ger, Frank and Kulikova, Galina and Landgraf, Angela}, title = {Instrumental magnitude constraints for the 11 July 1889, Chilik earthquake}, series = {Seismicity, fault rupture and earthquake hazards in slowly deforming regions}, volume = {432}, journal = {Seismicity, fault rupture and earthquake hazards in slowly deforming regions}, publisher = {The Geological Society}, address = {London}, isbn = {978-1-86239-745-3}, issn = {0305-8719}, doi = {10.1144/SP432.8}, pages = {41 -- 72}, year = {2017}, abstract = {A series of large-magnitude earthquakes above 6.9 occurred in the northern Tien-Shan between 1885 and 1911. The Chilik earthquake of 11 July 1889, has been listed with a magnitude of 8.3, based on sparse macroseismic intensities, constrained by reported damage. Despite the existence of several juvenile fault scarps in the epicentral region, that are possibly associated with the 1889 earthquake, no through-going surface rupture having the dimensions expected for a magnitude 8.3 earthquake has been located - a puzzling dilemma. Could the magnitude have been overestimated? This would have major implications not only for the understanding of the earthquake series, but also for regional hazard estimates. Fortunately, a fragmentary record from an early Rebeur-Paschwitz seismometer exists for the Chilik event, recorded in Wilhelmshaven (Germany). To constrain the magnitude, we compare the late coda waves of this record with those of recent events from Central Asia, recorded on modern instruments in Germany and filtered with Rebeur-Paschwitz instrument characteristics. Additional constraints come from disturbances of historic magnetograms that exist from the Chilik and the 1911 Chon-Kemin earthquakes. Scaling of these historic records confirm a magnitude of about 8 for the 1889 Chilik earthquake, pointing towards a lower crustal contribution to the fault area.}, language = {en} } @article{SteinLiuCamelbeecketal.2017, author = {Stein, Seth and Liu, Mian and Camelbeeck, Thierry and Merino, Miguel and Landgraf, Angela and Hintersberger, Esther and K{\"u}bler, Simon}, title = {Challenges in assessing seismic hazard in intraplate Europe}, series = {Seismicity, fault rupture and earthquake hazards in slowly deforming regions}, volume = {432}, journal = {Seismicity, fault rupture and earthquake hazards in slowly deforming regions}, editor = {Landgraf, Angelika and K{\"u}bler, Simon and Hintersberger, Esther and Stein, Seth}, publisher = {The Geological Society}, address = {London}, isbn = {978-1-86239-745-3}, issn = {0305-8719}, doi = {10.1144/SP432.7}, pages = {13 -- 28}, year = {2017}, abstract = {Intraplate seismicity is often characterized by episodic, clustered and migrating earthquakes and extended after-shock sequences. Can these observations - primarily from North America, China and Australia - usefully be applied to seismic hazard assessment for intraplate Europe? Existing assessments are based on instrumental and historical seismicity of the past c. 1000 years, as well as some data for active faults. This time span probably fails to capture typical large-event recurrence intervals of the order of tens of thousands of years. Palaeoseismology helps to lengthen the observation window, but preferentially produces data in regions suspected to be seismically active. Thus the expected maximum magnitudes of future earthquakes are fairly uncertain, possibly underestimated, and earthquakes are likely to occur in unexpected locations. These issues particularly arise in considering the hazards posed by low-probability events to both heavily populated areas and critical facilities. For example, are the variations in seismicity (and thus assumed seismic hazard) along the Rhine Graben a result of short sampling or are they real? In addition to a better assessment of hazards with new data and models, it is important to recognize and communicate uncertainties in hazard estimates. The more users know about how much confidence to place in hazard maps, the more effectively the maps can be used.}, language = {en} } @article{LandgrafKueblerHintersbergeretal.2017, author = {Landgraf, Angela and K{\"u}bler, Simon and Hintersberger, Esther and Stein, Seth}, title = {Active tectonics, earthquakes and palaeoseismicity in slowly deforming continents}, series = {Seismicity, fault rupture and earthquake hazards in slowly deforming regions}, volume = {432}, journal = {Seismicity, fault rupture and earthquake hazards in slowly deforming regions}, number = {1}, publisher = {The Geological Society}, address = {London}, isbn = {978-1-86239-745-3}, issn = {0305-8719}, doi = {10.1144/SP432.13}, pages = {1 -- 12}, year = {2017}, language = {en} } @article{KruegerKulikovaLandgraf2018, author = {Kr{\"u}ger, Frank and Kulikova, Galina and Landgraf, Angela}, title = {Magnitudes for the historical 1885 (Belovodskoe), the 1887 (Verny) and the 1889 (Chilik) earthquakes in Central Asia determined from magnetogram recordings}, series = {Geophysical journal international}, volume = {215}, journal = {Geophysical journal international}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggy377}, pages = {1824 -- 1840}, year = {2018}, abstract = {Six large magnitude earthquakes in Central Asia which occurred at the end of the 19th century were recorded on early magnetographs in Great Britain. Scalar seismic moment estimates of the 1911 Chon-Kemin, the 1902 Atushi and the 1907 Karatag earthquakes in Central Asia were recently determined by historical seismogram modelling. For those events, we find agreement between moment magnitudes estimated from seismograms and from magnetograms. This supports the assumption of linear scaling of magnetogram amplitudes as function of M-0, which we then use to estimate the moment magnitudes for earlier large-magnitude events, that is, the 1885 Belovodskoe, 1887 Verny and 1889 Chilik earthquakes. The magnetometer data imply that the Chilik earthquake had M(W)7.9, slightly smaller than the Chon-Kemin event with M(W)8.0. The Verny earthquake, however, for which we estimate M(W)7.7, is likely larger than listed in catalogues (M7.3). Similarly, we find a larger magnitude M(W)7.6 (instead of the previous M6.9) for the Belovodskoe earthquake, but this remains uncertain due to measurement imprecision.}, language = {en} } @misc{ArnousZeckraVenerdinietal.2020, author = {Arnous, Ahmad and Zeckra, Martin and Venerdini, Agostina and Alvarado, Patricia and Arrowsmith, Ram{\´o}n and Guillemoteau, Julien and Landgraf, Angela and Guti{\´e}rrez, Adolfo Antonio and Strecker, Manfred}, title = {Neotectonic Activity in the Low-Strain Broken Foreland (Santa B{\´a}rbara System) of the North-Western Argentinean Andes (26°S)}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {1008}, issn = {1866-8372}, doi = {10.25932/publishup-48018}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-480183}, pages = {1 -- 25}, year = {2020}, abstract = {Uplift in the broken Andean foreland of the Argentine Santa B{\´a}rbara System (SBS) is associated with the contractional reactivation of basement anisotropies, similar to those reported from the thick-skinned Cretaceous-Eocene Laramide province of North America. Fault scarps, deformed Quaternary deposits and landforms, disrupted drainage patterns, and medium-sized earthquakes within the SBS suggest that movement along these structures may be a recurring phenomenon, with yet to be defined repeat intervals and rupture lengths. In contrast to the Subandes thrust belt farther north, where eastward-migrating deformation has generated a well-defined thrust front, the SBS records spatiotemporally disparate deformation along structures that are only known to the first order. We present herein the results of geomorphic desktop analyses, structural field observations, and 2D electrical resistivity tomography and seismic-refraction tomography surveys and an interpretation of seismic reflection profiles across suspected fault scarps in the sedimentary basins adjacent to the Candelaria Range (CR) basement uplift, in the south-central part of the SBS. Our analysis in the CR piedmont areas reveals consistency between the results of near-surface electrical resistivity and seismic-refraction tomography surveys, the locations of prominent fault scarps, and structural geometries at greater depth imaged by seismic reflection data. We suggest that this deformation is driven by deep-seated blind thrusting beneath the CR and associated regional warping, while shortening involving Mesozoic and Cenozoic sedimentary strata in the adjacent basins was accommodated by layer-parallel folding and flexural-slip faults that cut through Quaternary landforms and deposits at the surface.}, language = {en} } @article{ArnousZeckraVenerdinietal.2020, author = {Arnous, Ahmad and Zeckra, Martin and Venerdini, Agostina and Alvarado, Patricia and Arrowsmith, Ram{\´o}n and Guillemoteau, Julien and Landgraf, Angela and Guti{\´e}rrez, Adolfo Antonio and Strecker, Manfred}, title = {Neotectonic Activity in the Low-Strain Broken Foreland (Santa B{\´a}rbara System) of the North-Western Argentinean Andes (26°S)}, series = {Lithosphere}, volume = {2020}, journal = {Lithosphere}, number = {1}, publisher = {GSA}, address = {Boulder, Colo.}, issn = {1947-4253}, doi = {10.2113/2020/8888588}, pages = {1 -- 25}, year = {2020}, abstract = {Uplift in the broken Andean foreland of the Argentine Santa B{\´a}rbara System (SBS) is associated with the contractional reactivation of basement anisotropies, similar to those reported from the thick-skinned Cretaceous-Eocene Laramide province of North America. Fault scarps, deformed Quaternary deposits and landforms, disrupted drainage patterns, and medium-sized earthquakes within the SBS suggest that movement along these structures may be a recurring phenomenon, with yet to be defined repeat intervals and rupture lengths. In contrast to the Subandes thrust belt farther north, where eastward-migrating deformation has generated a well-defined thrust front, the SBS records spatiotemporally disparate deformation along structures that are only known to the first order. We present herein the results of geomorphic desktop analyses, structural field observations, and 2D electrical resistivity tomography and seismic-refraction tomography surveys and an interpretation of seismic reflection profiles across suspected fault scarps in the sedimentary basins adjacent to the Candelaria Range (CR) basement uplift, in the south-central part of the SBS. Our analysis in the CR piedmont areas reveals consistency between the results of near-surface electrical resistivity and seismic-refraction tomography surveys, the locations of prominent fault scarps, and structural geometries at greater depth imaged by seismic reflection data. We suggest that this deformation is driven by deep-seated blind thrusting beneath the CR and associated regional warping, while shortening involving Mesozoic and Cenozoic sedimentary strata in the adjacent basins was accommodated by layer-parallel folding and flexural-slip faults that cut through Quaternary landforms and deposits at the surface.}, language = {en} } @article{RosenwinkelLandgrafSchwanghartetal.2017, author = {Rosenwinkel, Swenja and Landgraf, Angela and Schwanghart, Wolfgang and Volkmer, Friedrich and Dzhumabaeva, Atyrgul and Merchel, Silke and Rugel, Georg and Preusser, Frank and Korup, Oliver}, title = {Late Pleistocene outburst floods from Issyk Kul, Kyrgyzstan?}, series = {Earth surface processes and landforms : the journal of the British Geomorphological Research Group}, volume = {42}, journal = {Earth surface processes and landforms : the journal of the British Geomorphological Research Group}, publisher = {Wiley}, address = {Hoboken}, issn = {0197-9337}, doi = {10.1002/esp.4109}, pages = {1535 -- 1548}, year = {2017}, language = {en} } @article{PatyniakLandgrafDzhumabaevaetal.2017, author = {Patyniak, Magda and Landgraf, Angela and Dzhumabaeva, Atyrgul and Abdrakhmatov, Kanatbek E. and Rosenwinkel, Swenja and Korup, Oliver and Preusser, Frank and Fohlmeister, Jens Bernd and Arrowsmith, J. Ramon and Strecker, Manfred}, title = {Paleoseismic Record of Three Holocene Earthquakes Rupturing the Issyk-Ata Fault near Bishkek, North Kyrgyzstan}, series = {Bulletin of the Seismological Society of America}, volume = {107}, journal = {Bulletin of the Seismological Society of America}, publisher = {Seismological Society of America}, address = {Albany}, issn = {0037-1106}, doi = {10.1785/0120170083}, pages = {2721 -- 2737}, year = {2017}, abstract = {The northern edge of the western central Tien Shan range is bounded by the Issyk-Ata fault situated south of Bishkek, the capital of Kyrgyzstan. Contraction in this thick-skinned orogen occurs with low-strain accumulation and long earthquake recurrence intervals. In the nineteenth to twentieth centuries, a sequence of large earthquakes with magnitudes between 6.9 and 8 affected the northern Tien Shan but left nearly the entire extent of the Issyk-Ata fault unruptured. Here, the only known historic earthquake ruptured in A.D. 1885 (M6.9) along the western end of the Issyk-Ata fault. Because earthquakes in low-strain regions often tend to cluster in time and may promote failure along nearby structures, the earthquake history of the northern Tien Shan represents an exceptional structural setting for studying fault behavior affected by an intraplate earthquake sequence. We present a paleoseismological study from one site (Belek) along the Issyk-Ata fault located east of the A.D. 1885 epicentral area. Our analysis combines a range of tools, including photogrammetry, differential Global Positioning System, 3D visualization, and age modeling with different dating methods (infrared stimulated luminescence, radiocarbon, U-series) to improve the reliability of an event chronology for the trench stratigraphy and fault geometry. We were able to distinguish three different surfacerupturing paleoearthquakes; these affected the area before 10.5 +/- 1.1 cal ka B.P., at similar to 5.6 +/- 1.0 cal ka B.P., and at similar to 630 +/- 100 cal B.P., respectively. Associated paleomagnitudes for the last two earthquakes range between M6.7 and 7.4, with a cumulative slip rate of 0.7 +/- 0.32 mm/yr. We did not find evidence for the A.D. 1885 event at Belek. Our study yielded two main overall results: first, it extends the regional historic and paleoseismic record; second, the documented rupture events along the Issyk-Ata fault suggest that this fault was not affected in its entirety; instead, these events indicate segmented rupture behavior.}, language = {en} } @article{LandgrafDzhumabaevaAbdrakhmatovetal.2016, author = {Landgraf, Angela and Dzhumabaeva, A. and Abdrakhmatov, Kanatbek E. and Strecker, Manfred and Macaulay, E. A. and Arrowsmith, J. Ram{\´o}n and Sudhaus, Henriette and Preusser, F. and Rugel, Georg and Merchel, Silke}, title = {Repeated large-magnitude earthquakes in a tectonically active, low-strain continental interior: The northern Tien Shan, Kyrgyzstan}, series = {Journal of geophysical research : Solid earth}, volume = {121}, journal = {Journal of geophysical research : Solid earth}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9313}, doi = {10.1002/2015JB012714}, pages = {3888 -- 3910}, year = {2016}, abstract = {The northern Tien Shan of Kyrgyzstan and Kazakhstan has been affected by a series of major earthquakes in the late 19th and early 20th centuries. To assess the significance of such a pulse of strain release in a continental interior, it is important to analyze and quantify strain release over multiple time scales. We have undertaken paleoseismological investigations at two geomorphically distinct sites (Panfilovkoe and Rot Front) near the Kyrgyz capital Bishkek. Although located near the historic epicenters, both sites were not affected by these earthquakes. Trenching was accompanied by dating stratigraphy and offset surfaces using luminescence, radiocarbon, and Be-10 terrestrial cosmogenic nuclide methods. At Rot Front, trenching of a small scarp did not reveal evidence for surface rupture during the last 5000 years. The scarp rather resembles an extensive debris-flow lobe. At Panfilovkoe, we estimate a Late Pleistocene minimum slip rate of 0.2 +/- 0.1 mm/a, averaged over at least two, probably three earthquake cycles. Dip-slip reverse motion along segmented, moderately steep faults resulted in hanging wall collapse scarps during different events. The most recent earthquake occurred around 3.6 +/- 1.3 kyr ago (1 sigma), with dip-slip offsets between 1.2 and 1.4 m. We calculate a probabilistic paleomagnitude to be between 6.7 and 7.2, which is in agreement with regional data from the Kyrgyz range. The morphotectonic signals in the northern Tien Shan are a prime example of deformation in a tectonically active intracontinental mountain belt and as such can help understand the longer-term coevolution of topography and seismogenic processes in similar structural settings worldwide.}, language = {en} }