@article{KrtičkaFeldmeier2021, author = {Krtička, Jiř{\´i} and Feldmeier, Achim}, title = {Stochastic light variations in hot stars from wind instability}, series = {Astronomy and astrophysics : an international weekly journal / European Southern Observatory (ESO)}, volume = {648}, journal = {Astronomy and astrophysics : an international weekly journal / European Southern Observatory (ESO)}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/202040148}, pages = {9}, year = {2021}, abstract = {Context Line-driven wind instability is expected to cause small-scale wind inhomogeneities, X-ray emission, and wind line profile variability. The instability can already develop around the sonic point if it is initiated close to the photosphere due to stochastic turbulent motions. In such cases, it may leave its imprint on the light curve as a result of wind blanketing. Aims We study the photometric signatures of the line-driven wind instability. Methods We used line-driven wind instability simulations to determine the wind variability close to the star. We applied two types of boundary perturbations: a sinusoidal one that enables us to study in detail the development of the instability and a stochastic one given by a Langevin process that provides a more realistic boundary perturbation. We estimated the photometric variability from the resulting mass-flux variations. The variability was simulated assuming that the wind consists of a large number of independent conical wind sectors. We compared the simulated light curves with TESS light curves of OB stars that show stochastic variability. Results We find two typical signatures of line-driven wind instability in photometric data: a knee in the power spectrum of magnitude fluctuations, which appears due to engulfment of small-scale structure by larger structures, and a negative skewness of the distribution of fluctuations, which is the result of spatial dominance of rarefied regions. These features endure even when combining the light curves from independent wind sectors. Conclusions The stochastic photometric variability of OB stars bears certain signatures of the line-driven wind instability. The distribution function of observed photometric data shows negative skewness and the power spectra of a fraction of light curves exhibit a knee. This can be explained as a result of the line-driven wind instability triggered by stochastic base perturbations.}, language = {en} } @article{KurfuerstFeldmeierKrticka2018, author = {Kurf{\"u}rst, P. and Feldmeier, Achim and Krticka, Jiri}, title = {Two-dimensional modeling of density and thermal structure of dense circumstellar outflowing disks}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {613}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201731300}, pages = {24}, year = {2018}, abstract = {Context. Evolution of massive stars is affected by a significant loss of mass either via (nearly) spherically symmetric stellar winds or by aspherical mass-loss mechanisms, namely the outflowing equatorial disks. However, the scenario that leads to the formation of a disk or rings of gas and dust around massive stars is still under debate. It is also unclear how various forming physical mechanisms of the circumstellar environment affect its shape and density, as well as its kinematic and thermal structure. Results. Our models show the geometric distribution and contribution of viscous heating that begins to dominate in the central part of the disk for mass-loss rates higher than (M) over dot greater than or similar to 10(-10) M-circle dot yr(-1). In the models of dense viscous disks with (M) over dot > 10(-8) M-circle dot yr(-1), the viscosity increases the central temperature up to several tens of thousands of Kelvins, however the temperature rapidly drops with radius and with distance from the disk midplane. The high mass-loss rates and high viscosity lead to instabilities with significant waves or bumps in density and temperature in the very inner disk region. Conclusions. The two-dimensional radial-vertical models of dense outflowing disks including the full Navier-Stokes viscosity terms show very high temperatures that are however limited to only the central disk cores inside the optically thick area, while near the edge of the optically thick region the temperature may be low enough for the existence of neutral hydrogen, for example.}, language = {en} } @article{KrtickaFeldmeier2018, author = {Krticka, Jiri and Feldmeier, Achim}, title = {Light variations due to the line-driven wind instability and wind blanketing in O stars}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {617}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201731614}, pages = {7}, year = {2018}, abstract = {A small fraction of the radiative flux emitted by hot stars is absorbed by their winds and redistributed towards longer wavelengths. This effect, which leads also to the heating of the stellar photosphere, is termed wind blanketing. For stars with variable winds, the effect of wind blanketing may lead to the photometric variability. We have studied the consequences of line driven wind instability and wind blanketing for the light variability of O stars. We combined the results of wind hydrodynamic simulations and of global wind models to predict the light variability of hot stars due to the wind blanketing and instability. The wind instability causes stochastic light variability with amplitude of the order of tens of millimagnitudes and a typical timescale of the order of hours for spatially coherent wind structure. The amplitude is of the order of millimagnitudes when assuming that the wind consists of large number of independent concentric cones. The variability with such amplitude is observable using present space borne photometers. We show that the simulated light curve is similar to the light curves of O stars obtained using BRITE and CoRoT satellites.}, language = {en} } @article{ThomasFeldmeier2016, author = {Thomas, Timon and Feldmeier, Achim}, title = {Radiative waves in stellar winds with line scattering}, series = {Monthly notices of the Royal Astronomical Society}, volume = {460}, journal = {Monthly notices of the Royal Astronomical Society}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stw1008}, pages = {1923 -- 1933}, year = {2016}, abstract = {Photospheric radiation can drive winds from hot, massive stars by direct momentum transfer through scattering in bound-bound transitions of atmospheric ions. The line radiation force should cause a new radiative wave mode. The dispersion relation from perturbations of the line force was analysed so far either in Sobolev approximation or for pure line absorption. The former does not include the line-driven instability, and the latter cannot account for upstream propagating, radiative waves. We consider a non-Sobolev line force that includes scattering in a simplified way, accounting however for the important line-drag effect. We derive a new dispersion relation for radiative waves, and analyse wave propagation using Fourier methods, and by numerical solution of an integro-differential equation. The existence of an upstream propagating, dispersive radiative wave mode is demonstrated.}, language = {en} } @article{KurfuerstFeldmeierKrticka2014, author = {Kurfuerst, P. and Feldmeier, Achim and Krticka, Jiri}, title = {Time-dependent modeling of extended thin decretion disks of critically rotating stars}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {569}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201424272}, pages = {7}, year = {2014}, abstract = {Context. During their evolution massive stars can reach the phase of critical rotation when a further increase in rotational speed is no longer possible. Direct centrifugal ejection from a critically or near-critically rotating surface forms a gaseous equatorial decretion disk. Anomalous viscosity provides the efficient mechanism for transporting the angular momentum outwards. The outer part of the disk can extend up to a very large distance from the parent star. Aims. We study the evolution of density, radial and azimuthal velocity, and angular momentum loss rate of equatorial decretion disks out to very distant regions. We investigate how the physical characteristics of the disk depend on the distribution of temperature and viscosity. Methods. We calculated stationary models using the Newton-Raphson method. For time-dependent hydrodynamic modeling we developed the numerical code based on an explicit finite difference scheme on an Eulerian grid including full Navier-Stokes shear viscosity. Results. The sonic point distance and the maximum angular momentum loss rate strongly depend on the temperature profile and are almost independent of viscosity. The rotational velocity at large radii rapidly drops accordingly to temperature and viscosity distribution. The total amount of disk mass and the disk angular momentum increase with decreasing temperature and viscosity. Conclusions. The time-dependent one-dimensional models basically confirm the results obtained in the stationary models as well as the assumptions of the analytical approximations. Including full Navier-Stokes viscosity we systematically avoid the rotational velocity sign change at large radii. The unphysical drop of the rotational velocity and angular momentum loss at large radii (present in some models) can be avoided in the models with decreasing temperature and viscosity.}, language = {en} } @phdthesis{Feldmeier2001, author = {Feldmeier, Achim}, title = {Hydrodynamics of astrophysical winds driven by scattering in spectral lines}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0000388}, school = {Universit{\"a}t Potsdam}, year = {2001}, abstract = {Liniengetriebene Winde werden durch Impuls{\"u}bertrag von Photonen auf ein Plasma bei Absorption oder Streuung in zahlreichen Spektrallinien beschleunigt. Dieser Prozess ist besonders effizient f{\"u}r ultraviolette Strahlung und Plasmatemperaturen zwischen 10^4 K und 10^5 K. Zu den astronomischen Objekten mit liniengetriebenen Winden geh{\"o}ren Sterne der Spektraltypen O, B und A, Wolf-Rayet-Sterne sowie Akkretionsscheiben verschiedenster Gr{\"o}ßenordnung, von Scheiben um junge Sterne und in kataklysmischen Ver{\"a}nderlichen bis zu Quasarscheiben. Es ist bislang nicht m{\"o}glich, das vollst{\"a}ndige Windproblem numerisch zu l{\"o}sen, also die Hydrodynamik, den Strahlungstransport und das statistische Gleichgewicht dieser Str{\"o}mungen gleichzeitig zu behandeln. Die Betonung liegt in dieser Arbeit auf der Windhydrodynamik, mit starken Vereinfachungen in den beiden anderen Gebieten. Wegen pers{\"o}nlicher Beteiligung betrachte ich drei Themen im Detail. 1. Windinstabilit{\"a}t durch Dopplerde-shadowing des Gases. Die Instabilit{\"a}t bewirkt, dass Windgas in dichte Schalen komprimiert wird, die von starken Stoßfronten begrenzt sind. Schnelle Wolken entstehen im Raum zwischen den Schalen und stoßen mit diesen zusammen. Dies erzeugt R{\"o}ntgenflashes, die die beobachtete R{\"o}ntgenstrahlung heißer Sterne erkl{\"a}ren k{\"o}nnen. 2. Wind runway durch radiative Wellen. Der runaway zeigt, warum beobachtete liniengetriebene Winde schnelle, kritische L{\"o}sungen anstelle von Brisenl{\"o}sungen (oder shallow solutions) annehmen. Unter bestimmten Bedingungen stabilisiert der Wind sich auf masse{\"u}berladenen L{\"o}sungen, mit einem breiten, abbremsenden Bereich und Knicken im Geschwindigkeitsfeld. 3. Magnetische Winde von Akkretionsscheiben um Sterne oder in aktiven Galaxienzentren. Die Linienbeschleunigung wird hier durch die Zentrifugalkraft entlang korotierender poloidaler Magnetfelder und die Lorentzkraft aufgrund von Gradienten im toroidalen Feld unterst{\"u}tzt. Ein Wirbelblatt, das am inneren Scheibenrand beginnt, kann zu stark erh{\"o}hten Massenverlustraten f{\"u}hren.}, language = {en} }