@article{FeudelTuckermanZaksetal.2017, author = {Feudel, Fred and Tuckerman, Laurette S. and Zaks, Michael and Hollerbach, Rainer}, title = {Hysteresis of dynamos in rotating spherical shell convection}, series = {Physical review fluids / American Physical Society}, volume = {2}, journal = {Physical review fluids / American Physical Society}, publisher = {American Physical Society}, address = {College Park}, issn = {2469-990X}, doi = {10.1103/PhysRevFluids.2.053902}, pages = {11}, year = {2017}, abstract = {Bifurcations of dynamos in rotating and buoyancy-driven spherical Rayleigh-Benard convection in an electrically conducting fluid are investigated numerically. Both nonmagnetic and magnetic solution branches comprised of rotating waves are traced by path-following techniques, and their bifurcations and interconnections for different Ekman numbers are determined. In particular, the question of whether the dynamo branches bifurcate super- or sub-critically and whether a direct link to the primary pure convective states exists is answered.}, language = {en} } @article{FeudelSeehaferTuckerman2013, author = {Feudel, Fred and Seehafer, Norbert and Tuckerman, Laurette S.}, title = {Multistability in rotating spherical shell convection}, issn = {1539-3755}, year = {2013}, language = {en} } @article{FeudelSeehaferTuckermanetal.2013, author = {Feudel, Fred and Seehafer, Norbert and Tuckerman, Laurette S. and Gellert, Marcus}, title = {Multistability in rotating spherical shell convection}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {87}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {2}, publisher = {American Physical Society}, address = {College Park}, issn = {1539-3755}, doi = {10.1103/PhysRevE.87.023021}, pages = {8}, year = {2013}, abstract = {The multiplicity of stable convection patterns in a rotating spherical fluid shell heated from the inner boundary and driven by a central gravity field is presented. These solution branches that arise as rotating waves (RWs) are traced for varying Rayleigh number while their symmetry, stability, and bifurcations are studied. At increased Rayleigh numbers all the RWs undergo transitions to modulated rotating waves (MRWs) which are classified by their spatiotemporal symmetry. The generation of a third frequency for some of the MRWs is accompanied by a further loss of symmetry. Eventually a variety of MRWs, three-frequency solutions, and chaotic saddles and attractors control the dynamics for higher Rayleigh numbers.}, language = {en} } @article{FeudelBergemannTuckermanetal.2011, author = {Feudel, Fred and Bergemann, Kay and Tuckerman, Laurette S. and Egbers, C. and Futterer, B. and Gellert, Marcus and Hollerbach, Rainer}, title = {Convection patterns in a spherical fluid shell}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {83}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {4}, publisher = {American Physical Society}, address = {College Park}, issn = {1539-3755}, doi = {10.1103/PhysRevE.83.046304}, pages = {8}, year = {2011}, abstract = {Symmetry-breaking bifurcations have been studied for convection in a nonrotating spherical shell whose outer radius is twice the inner radius, under the influence of an externally applied central force field with a radial dependence proportional to 1/r(5). This work is motivated by the GeoFlow experiment, which is performed under microgravity condition at the International Space Station where this particular central force can be generated. In order to predict the observable patterns, simulations together with path-following techniques and stability computations have been applied. Branches of axisymmetric, octahedral, and seven-cell solutions have been traced. The bifurcations producing them have been identified and their stability ranges determined. At higher Rayleigh numbers, time-periodic states with a complex spatiotemporal symmetry are found, which we call breathing patterns.}, language = {en} }