@article{KlemmeFeldhausPotapkinetal.2021, author = {Klemme, Stephan and Feldhaus, Michael and Potapkin, Vasily and Wilke, Max and Borchert, Manuela and Louvel, Marion and Loges, Anselm and Rohrbach, Arno and Weitkamp, Petra and Welter, Edmund and Kokh, Maria A. and Schmidt, Christian and Testemale, Denis}, title = {A hydrothermal apparatus for x-ray absorption spectroscopy of hydrothermal fluids at DESY}, series = {Review of scientific instruments : a monthly journal devoted to scientific instruments, apparatus, and techniques}, volume = {92}, journal = {Review of scientific instruments : a monthly journal devoted to scientific instruments, apparatus, and techniques}, number = {6}, publisher = {AIP Publishing}, address = {Melville}, issn = {0034-6748}, doi = {10.1063/5.0044767}, pages = {6}, year = {2021}, abstract = {We present a new autoclave that enables in situ characterization of hydrothermal fluids at high pressures and high temperatures at synchrotron x-ray radiation sources. The autoclave has been specifically designed to enable x-ray absorption spectroscopy in fluids with applications to mineral solubility and element speciation analysis in hydrothermal fluids in complex compositions. However, other applications, such as Raman spectroscopy, in high-pressure fluids are also possible with the autoclave. First experiments were run at pressures between 100 and 600 bars and at temperatures between 25 degrees C and 550 degrees C, and preliminary results on scheelite dissolution in fluids of different compositions show that the autoclave is well suited to study the behavior of ore-forming metals at P-T conditions relevant to the Earth's crust.}, language = {en} }