@article{PrommerMaurervonWebskyetal.2018, author = {Prommer, Hans-Ulrich and Maurer, Johannes and von Websky, Karoline and Freise, Christian and Sommer, Kerstin and Nasser, Hamoud and Samapati, Rudi and Reglin, Bettina and Guimaraes, Pedro and Pries, Axel Radlach and Querfeld, Uwe}, title = {Chronic kidney disease induces a systemic microangiopathy, tissue hypoxia and dysfunctional angiogenesis}, series = {Scientific reports}, volume = {8}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-018-23663-1}, pages = {14}, year = {2018}, abstract = {Chronic kidney disease (CKD) is associated with excessive mortality from cardiovascular disease (CVD). Endothelial dysfunction, an early manifestation of CVD, is consistently observed in CKD patients and might be linked to structural defects of the microcirculation including microvascular rarefaction. However, patterns of microvascular rarefaction in CKD and their relation to functional deficits in perfusion and oxygen delivery are currently unknown. In this in-vivo microscopy study of the cremaster muscle microcirculation in BALB/c mice with moderate to severe uremia, we show in two experimental models (adenine feeding or subtotal nephrectomy), that serum urea levels associate incrementally with a distinct microangiopathy. Structural changes were characterized by a heterogeneous pattern of focal microvascular rarefaction with loss of coherent microvascular networks resulting in large avascular areas. Corresponding microvascular dysfunction was evident by significantly diminished blood flow velocity, vascular tone, and oxygen uptake. Microvascular rarefaction in the cremaster muscle paralleled rarefaction in the myocardium, which was accompanied by a decrease in transcription levels not only of the transcriptional regulator HIF-1 alpha, but also of its target genes Angpt-2, TIE-1 and TIE-2, Flkt-1 and MMP-9, indicating an impaired hypoxia-driven angiogenesis. Thus, experimental uremia in mice associates with systemic microvascular disease with rarefaction, tissue hypoxia and dysfunctional angiogenesis.}, language = {en} } @article{HechtFreisevonWebskyetal.2016, author = {Hecht, Eva and Freise, Christian and von Websky, Karoline and Nasser, Hamoud and Kretzschmar, Nadja and Stawowy, Philipp and Hocher, Berthold and Querfeld, Uwe}, title = {The matrix metalloproteinases 2 and 9 initiate uraemic vascular calcifications}, series = {Nephrology, dialysis, transplantation}, volume = {31}, journal = {Nephrology, dialysis, transplantation}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0931-0509}, doi = {10.1093/ndt/gfv321}, pages = {789 -- 797}, year = {2016}, abstract = {The matrix metalloproteinases (MMP) MMP-2 and MMP-9 are physiological regulators of vascular remodelling. Their dysregulation could contribute to vascular calcification. We examined the role of the MMP-2 and MMP-9 in uraemic vascular calcification in vivo and in vitro. The impact of pharmacological MMP inhibition on the development of media calcifications was explored in an aggressive animal model of uraemic calcification. In addition, the selective effects of addition and inhibition, respectively, of MMP-2 and MMP-9 on calcium-/phosphate-induced calcifications were studied in a murine cell line of vascular smooth muscle cells (VSMCs). High-dose calcitriol treatment of uraemic rats given a high phosphate diet induced massive calcifications, apoptosis and increased gene expressions of MMP-2, MMP-9 and of osteogenic transcription factors and proteins in aortic VSMC. The MMP inhibitor doxycycline prevented the VSMC transdifferentiation to osteoblastic cells, suppressed transcription of mediators of matrix remodelling and almost completely blocked aortic calcifications while further increasing apoptosis. Similarly, specific inhibitors of either MMP-2 or -9, or of both gelatinases (Ro28-2653) and a selective knockdown of MMP-2/-9 mRNA expression blocked calcification of murine VSMC induced by calcification medium (CM). In contrast to MMP inhibition, recombinant MMP-2 or MMP-9 enhanced CM-induced calcifications and the secretion of gelatinases. These data indicate that both gelatinases provide essential signals for phenotypic VSMC conversion, matrix remodelling and the initiation of vascular calcification. Their inhibition seems a promising strategy in the prevention of vascular calcifications.}, language = {en} } @article{HocherOberthuerSlowinskietal.2013, author = {Hocher, Berthold and Oberth{\"u}r, Dominik and Slowinski, Torsten and Querfeld, Uwe and Sch{\"a}fer, Franz and Doyon, Anke and Tepel, Martin and Roth, Heinz J. and Gr{\"o}n, Hans J. and Reichetzeder, Christoph and Betzel, Christian and Armbruster, Franz Paul}, title = {Modeling of Oxidized PTH (oxPTH) and Non-oxidized PTH (n-oxPTH) Receptor Binding and Relationship of Oxidized to Non-Oxidized PTH in Children with Chronic Renal Failure, Adult Patients on Hemodialysis and Kidney Transplant Recipients}, series = {Kidney \& blood pressure research : official organ of the Gesellschaft f{\"u}r Nephrologie}, volume = {37}, journal = {Kidney \& blood pressure research : official organ of the Gesellschaft f{\"u}r Nephrologie}, number = {4-5}, publisher = {Karger}, address = {Basel}, issn = {1420-4096}, doi = {10.1159/000350149}, pages = {240 -- 251}, year = {2013}, abstract = {Background: The biological properties of oxidized and non-oxidized PTH are substantially different. Oxidized PTH (oxPTH) loses its PTH receptor-stimulating properties, whereas non-oxidized PTH (n-oxPTH) is a full agonist of the receptor. This was described in more than 20 well published studies in the 1970(s) and 80(s). However, PTH oxidation has been ignored during the development of PTH assays for clinical use so far. Even the nowadays used third generation assay systems do not consider oxidation of PTH. We recently developed an assay to differentiate between oxPTH and n-oxPTH. In the current study we established normal values for this assay system. Furthermore, we compare the ratio of oxPTH to n-oxPTH in different population with chronic renal failure: 620 children with renal failure stage 2-4 of the 4C study, 342 adult patients on dialysis, and 602 kidney transplant recipients. In addition, we performed modeling of the interaction of either oxPTH or n-oxPTH with the PTH receptor using biophysical structure approaches. Results: The children had the highest mean as well as maximum n-oxPTH concentrations as compared to adult patients (both patients on dialysis as well as kidney transplant recipients). The relationship between oxPTH and n-oxPTH of individual patients varied substantially in all three populations with renal impairment. The analysis of n-oxPTH in 89 healthy control subjects revealed that n-oxPTH concentrations in patient with renal failure were higher as compared to healthy adult controls (2.25-fold in children with renal failure, 1.53-fold in adult patients on dialysis, and 1.56-fold in kidney transplant recipients, respectively). Computer assisted biophysical structure modeling demonstrated, however, minor sterical- and/or electrostatic changes in oxPTH and n-oxPTH. This indicated that PTH oxidation may induce refolding of PTH and hence alters PTH-PTH receptor interaction via oxidation induced three-dimensional structure alteration of PTH. Conclusion: A huge proportion of circulating PTH measured by current state-of-the-art assay systems is oxidized and thus not biologically active. The relationship between oxPTH and n-oxPTH of individual patients varied substantially. Non-oxidized PTH concentrations are 1.5 - 2.25 fold higher in patients with renal failure as compared to health controls. Measurements of n-oxPTH may reflect the hormone status more precise. The iPTH measures describes most likely oxidative stress in patients with renal failure rather than the PTH hormone status. This, however, needs to be demonstrated in further clinical studies.}, language = {en} } @inproceedings{DoyonSchmiedchenBayazitetal.2012, author = {Doyon, Anke and Schmiedchen, Bettina and Bayazit, Aysun and Canpolat, Nur and Duzova, Ali and Kracht, Daniela and Litwin, Mieczyslaw and Niemirska, Anna and Sozeri, Betul and Zeller, Rene and Anarat, Ali and Caliskan, Salim and Mir, Sevgi and Shroff, Rukshana and Melk, Anette and W{\"u}hl, Elke and Schweigert, Florian J. and Querfeld, Uwe and Sch{\"a}fer, Franz}, title = {Altered arterial morphology and function in children with CKD Role of mineral-bone disorder}, series = {Pediatric nephrology : journal of the International Pediatric Nephrology Association}, volume = {27}, booktitle = {Pediatric nephrology : journal of the International Pediatric Nephrology Association}, number = {9}, publisher = {Springer}, address = {New York}, organization = {4C Study Consortium}, issn = {0931-041X}, pages = {1606 -- 1607}, year = {2012}, language = {en} } @inproceedings{DoyonSchmiedchenBayazitetal.2012, author = {Doyon, Anke and Schmiedchen, Bettina and Bayazit, Aysun and Canpolat, Nur and Duzova, Ali and Kracht, Daniela and Litwin, Mieczyslaw and Niemirska, Anna and Sozeri, Betul and Zeller, Rene and Ranchin, Bruno and Anarat, Ali and Caliskan, Salim and Mir, Sevgi and Melk, Anette and W{\"u}hl, Elke and Schweigert, Florian J. and Querfeld, Uwe and Sch{\"a}fer, Franz}, title = {Distribuion and determinants of serum vitamin d concentrations in european children with chronic kidney disease}, series = {Pediatric nephrology : journal of the International Pediatric Nephrology Association}, volume = {27}, booktitle = {Pediatric nephrology : journal of the International Pediatric Nephrology Association}, number = {9}, publisher = {Springer}, address = {New York}, organization = {4C Consortium}, issn = {0931-041X}, pages = {1627 -- 1628}, year = {2012}, language = {en} } @article{HenzeRailaKempfetal.2011, author = {Henze, Andrea and Raila, Jens and Kempf, Caroline and Reinke, Petra and Sefrin, Anett and Querfeld, Uwe and Schweigert, Florian J.}, title = {Vitamin A metabolism is changed in donors after living-kidney transplantation an observational study}, series = {Lipids in health and disease}, volume = {10}, journal = {Lipids in health and disease}, number = {23}, publisher = {BioMed Central}, address = {London}, issn = {1476-511X}, doi = {10.1186/1476-511X-10-231}, pages = {7}, year = {2011}, abstract = {Background: The kidneys are essential for the metabolism of vitamin A (retinol) and its transport proteins retinol-binding protein 4 (RBP4) and transthyretin. Little is known about changes in serum concentration after living donor kidney transplantation (LDKT) as a consequence of unilateral nephrectomy; although an association of these parameters with the risk of cardiovascular diseases and insulin resistance has been suggested. Therefore we analyzed the concentration of retinol, RBP4, apoRBP4 and transthyretin in serum of 20 living-kidney donors and respective recipients at baseline as well as 6 weeks and 6 months after LDKT. Results: As a consequence of LDKT, the kidney function of recipients was improved while the kidney function of donors was moderately reduced within 6 weeks after LDKT. With regard to vitamin A metabolism, the recipients revealed higher levels of retinol, RBP4, transthyretin and apoRBP4 before LDKT in comparison to donors. After LDKT, the levels of all four parameters decreased in serum of the recipients, while retinol, RBP4 as well as apoRBP4 serum levels of donors increased and remained increased during the follow-up period of 6 months. Conclusion: LDKT is generally regarded as beneficial for allograft recipients and not particularly detrimental for the donors. However, it could be demonstrated in this study that a moderate reduction of kidney function by unilateral nephrectomy, resulted in an imbalance of components of vitamin A metabolism with a significant increase of retinol and RBP4 and apoRBP4 concentration in serum of donors.}, language = {en} } @article{ZebgerGongMuellerDierckeetal.2011, author = {Zebger-Gong, Hong and Mueller, Dominik and Diercke, Michaela and Haffner, Dieter and Hocher, Berthold and Verberckmoes, Steven and Schmidt, Sven and D'Haese, Patrick C. and Querfeld, Uwe}, title = {1,25-Dihydroxyvitamin D-3-induced aortic calcifications in experimental uremia: up-regulation of osteoblast markers, calcium-transporting proteins and osterix}, series = {Journal of hypertension}, volume = {29}, journal = {Journal of hypertension}, number = {2}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {0263-6352}, doi = {10.1097/HJH.0b013e328340aa30}, pages = {339 -- 348}, year = {2011}, abstract = {Background and objective Whether treatment with vitamin D receptor activators contributes to cardiovascular disease in patients with chronic kidney disease is a matter of debate. We studied mechanisms involved in vitamin D-related vascular calcifications in vivo and in vitro. Methods Aortic calcifications were induced in subtotally nephrectomized (SNX) rats by treatment with a high dose (0.25 mu g/kg per day) of 1,25-dihydroxyvitamin D-3 (calcitriol) given for 6 weeks. Likewise, primary rat vascular smooth muscle cells (VSMCs) were incubated with calcitriol at concentrations ranging from 10(-11) to 10(-7) mol/l. Immunohistochemistry revealed that the aortic expression of osteopontin, osteocalcin and bone sialoprotein was significantly increased in calcitriol-treated SNX rats compared to untreated SNX controls. In addition, aortic expression of the transient receptor potential vanilloid calcium channel 6 (TRPV6) and calbindin D9k was significantly up-regulated by treatment with calcitriol. Furthermore, calcitriol significantly increased expression of the osteogenic transcription factor osterix. In-vitro studies showed similar results, confirming that these effects could be attributed to treatment with calcitriol. Conclusions High-dose calcitriol treatment induces an osteoblastic phenotype in VSMC both in SNX rats and in vitro, associated with up-regulation of proteins regulating mineralization and calcium transport, and of the osteogenic transcription factor osterix.}, language = {en} }