@article{WessigPick2011, author = {Wessig, Pablo and Pick, Charlotte}, title = {Photochemical synthesis and properties of axially chiral naphthylpyridines}, series = {Journal of photochemistry and photobiology : A, Chemistry}, volume = {222}, journal = {Journal of photochemistry and photobiology : A, Chemistry}, number = {1}, publisher = {Elsevier}, address = {Lausanne}, issn = {1010-6030}, doi = {10.1016/j.jphotochem.2011.06.006}, pages = {263 -- 265}, year = {2011}, abstract = {Five alkynyl pyridines were prepared and cyclized to naphthylpyridines as the main products in the course of a Photo-Dehydro-Diels-Alder reaction. Four of the final products are axially chiral and the determination of the rotational barrier by DFT calculations, dynamic NMR and H PLC experiments is demonstrated. (C) 2011 Elsevier B.V. All rights reserved.}, language = {en} } @article{WessigPickSchilde2011, author = {Wessig, Pablo and Pick, Charlotte and Schilde, Uwe}, title = {First example of an atropselective dehydro-Diels-Alder (ADDA) reaction}, series = {Tetrahedron letters}, volume = {52}, journal = {Tetrahedron letters}, number = {32}, publisher = {Elsevier}, address = {Oxford}, issn = {0040-4039}, doi = {10.1016/j.tetlet.2011.06.024}, pages = {4221 -- 4223}, year = {2011}, abstract = {A new concept of a stereoselective synthesis of axially chiral biaryls, formed in the course of the dehydro-Diels-Alder (DDA) reaction, has been disclosed. It is based on asymmetric induction of the newly formed chirality axis by a chirality center, which is present in the two synthesized DDA reactants. Depending on the different length of the linkers joining the alkyne moieties the DDA reaction may be triggered photochemically or thermally, where only the thermal variant was stereoselective.}, language = {en} } @article{WessigMatthesPick2011, author = {Wessig, Pablo and Matthes, Annika and Pick, Charlotte}, title = {The photo-dehydro-Diels-Alder (PDDA) reaction}, series = {Organic \& biomolecular chemistry : an international journal of synthetic, physical and biomolecular organic chemistry}, volume = {9}, journal = {Organic \& biomolecular chemistry : an international journal of synthetic, physical and biomolecular organic chemistry}, number = {22}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1477-0520}, doi = {10.1039/c1ob06066j}, pages = {7599 -- 7605}, year = {2011}, abstract = {The photo-dehydro-Diels-Alder (PDDA) reaction is a valuable extension of the classical Diels-Alder (DA) reaction. The PDDA reaction differs from the DA reaction by the replacement of one of the C-C-double bonds of the diene moiety by a C-C triple bond and by the photochemical triggering of the reaction. This entails that, in contrast to the DA reaction, the PDDA reaction proceeds according to a multistage mechanism with biradicals and cycloallenes as intermediates. The PDDA reaction provides access to a considerable variety of compound classes. For example, 1-phenylnaphthlenes, 1,1'-binaphthyls, N-heterocyclic biaryls, and naphthalenophanes could be obtained by this reaction.}, language = {en} }