@article{DierckeKuckeinVermaetal.2021, author = {Diercke, Andrea and Kuckein, Christoph and Verma, Meetu and Denker, Carsten}, title = {Filigree in the surroundings of polar crown and high-latitude filaments}, series = {Solar physics : a journal for solar and solar-stellar research and the study of solar terrestrial physics}, volume = {296}, journal = {Solar physics : a journal for solar and solar-stellar research and the study of solar terrestrial physics}, number = {2}, publisher = {Springer}, address = {Dordrecht}, issn = {0038-0938}, doi = {10.1007/s11207-021-01776-7}, pages = {25}, year = {2021}, abstract = {High-resolution observations of polar crown and high-latitude filaments are scarce. We present a unique sample of such filaments observed in high-resolution H alpha narrow-band filtergrams and broad-band images, which were obtained with a new fast camera system at the Vacuum Tower Telescope (VTT), Tenerife, Spain. The Chromospheric Telescope (ChroTel) provided full-disk context observations in H alpha, CaiiK, and Hei 10830 angstrom. The Helioseismic and Magnetic Imager (HMI) and the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) provided line-of-sight magnetograms and ultraviolet (UV) 1700 angstrom filtergrams, respectively. We study filigree in the vicinity of polar crown and high-latitude filaments and relate their locations to magnetic concentrations at the filaments' footpoints. Bright points are a well studied phenomenon in the photosphere at low latitudes, but they were not yet studied in the quiet network close to the poles. We examine size, area, and eccentricity of bright points and find that their morphology is very similar to their counterparts at lower latitudes, but their sizes and areas are larger. Bright points at the footpoints of polar crown filaments are preferentially located at stronger magnetic flux concentrations, which are related to bright regions at the border of supergranules as observed in UV filtergrams. Examining the evolution of bright points on three consecutive days reveals that their amount increases while the filament decays, which indicates they impact the equilibrium of the cool plasma contained in filaments.}, language = {en} } @article{KontogiannisDinevaDierckeetal.2020, author = {Kontogiannis, Ioannis and Dineva, Ekaterina Ivanova and Diercke, Andrea and Verma, Meetu and Kuckein, Christoph and Balthasar, Horst and Denker, Carsten}, title = {High-resolution spectroscopy of an erupting minifilament and its impact on the nearby chromosphere}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {898}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {Institute of Physics Publ.}, address = {London}, issn = {0004-637X}, doi = {10.3847/1538-4357/aba117}, pages = {12}, year = {2020}, abstract = {We study the evolution of a minifilament eruption in a quiet region at the center of the solar disk and its impact on the ambient atmosphere. We used high spectral resolution imaging spectroscopy in H alpha acquired by the echelle spectrograph of the Vacuum Tower Telescope, Tenerife, Spain; photospheric magnetic field observations from the Helioseismic Magnetic Imager; and UV/EUV imaging from the Atmospheric Imaging Assembly of the Solar Dynamics Observatory. The H alpha line profiles were noise-stripped using principal component analysis and then inverted to produce physical and cloud model parameter maps. The minifilament formed between small-scale, opposite-polarity magnetic features through a series of small reconnection events, and it erupted within an hour after its appearance in H alpha. Its development and eruption exhibited similarities to large-scale erupting filaments, indicating the action of common mechanisms. Its eruption took place in two phases, namely, a slow rise and a fast expansion, and it produced a coronal dimming, before the minifilament disappeared. During its eruption, we detected a complicated velocity pattern, indicative of a twisted, thread-like structure. Part of its material returned to the chromosphere, producing observable effects on nearby low-lying magnetic structures. Cloud model analysis showed that the minifilament was initially similar to other chromospheric fine structures, in terms of optical depth, source function, and Doppler width, but it resembled a large-scale filament on its course to eruption. High spectral resolution observations of the chromosphere can provide a wealth of information regarding the dynamics and properties of minifilaments and their interactions with the surrounding atmosphere.}, language = {en} } @article{DierckeKuckeinDenker2019, author = {Diercke, Andrea and Kuckein, Christoph and Denker, Carsten}, title = {Dynamics and connectivity of an extended arch filament system}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {629}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201935583}, pages = {14}, year = {2019}, abstract = {Aims. In this study, we analyzed a filament system, which expanded between moving magnetic features (MMFs) of a decaying sunspot and opposite flux outside of the active region from the nearby quiet-Sun network. This configuration deviated from a classical arch filament system (AFS), which typically connects two pores in an emerging flux region. Thus, we called this system an extended AFS. We contrasted classical and extended AFSs with an emphasis on the complex magnetic structure of the latter. Furthermore, we examined the physical properties of the extended AFS and described its dynamics and connectivity. Methods. The extended AFS was observed with two instruments at the Dunn Solar Telescope (DST). The Rapid Oscillations in the Solar Atmosphere (ROSA) imager provided images in three different wavelength regions, which covered the dynamics of the extended AFS at different atmospheric heights. The Interferometric Bidimensional Spectropolarimeter (IBIS) provided spectroscopic Ha data and spectropolarimetric data that was obtained in the near-infrared (NIR) Call lambda 8542 angstrom line. We derived the corresponding line-of-sight (LOS) velocities and used He II lambda 304 angstrom extreme ultraviolet (EUV) images of the Atmospheric Imaging Assembly (AIA) and LOS magnetograms of the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) as context data. Results. The NIR Call Stokes-V maps are not suitable to definitively define a clear polarity inversion line and to classify this chromospheric structure. Nevertheless, this unusual AFS connects the MMFs of a decaying sunspot with the network field. At the southern footpoint, we measured that the flux decreases over time. We find strong downflow velocities at the footpoints of the extended AFS, which increase in a time period of 30 min. The velocities are asymmetric at both footpoints with higher velocities at the southern footpoint. An EUV brigthening appears in one of the arch filaments, which migrates from the northern footpoint toward the southern one. This activation likely influences the increasing redshift at the southern footpoint. Conclusions. The extended AFS exhibits a similar morphology as classical AFSs, for example, threaded filaments of comparable length and width. Major differences concern the connection from MMFs around the sunspot with the flux of the neighboring quietSun network, converging footpoint motions, and longer lifetimes of individual arch filaments of about one hour, while the extended AFS is still very dynamic.}, language = {en} } @article{GonzalezManriqueKuckeinColladosetal.2018, author = {Gonzalez Manrique, Sergio Javier and Kuckein, Christoph and Collados, M. and Denker, Carsten and Solanki, S. K. and Gomory, P. and Verma, Meetu and Balthasar, H. and Lagg, A. and Diercke, Andrea}, title = {Temporal evolution of arch filaments as seen in He I 10 830 angstrom}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {617}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201832684}, pages = {11}, year = {2018}, abstract = {Aims. We study the evolution of an arch filament system (AFS) and of its individual arch filaments to learn about the processes occurring in them. Methods. We observed the AFS at the GREGOR solar telescope on Tenerife at high cadence with the very fast spectroscopic mode of the GREGOR Infrared Spectrograph (GRIS) in the He I 10 830 angstrom spectral range. The He I triplet profiles were fitted with analytic functions to infer line-of-sight (LOS) velocities to follow plasma motions within the AFS. Results. We tracked the temporal evolution of an individual arch filament over its entire lifetime, as seen in the He I 10 830 angstrom triplet. The arch filament expanded in height and extended in length from 13 ' to 21 '. The lifetime of this arch filament is about 30 min. About 11 min after the arch filament is seen in He I, the loop top starts to rise with an average Doppler velocity of 6 km s(-1). Only two minutes later, plasma drains down with supersonic velocities towards the footpoints reaching a peak velocity of up to 40 km s(-1) in the chromosphere. The temporal evolution of He I 10 830 angstrom profiles near the leading pore showed almost ubiquitous dual red components of the He I triplet, indicating strong downflows, along with material nearly at rest within the same resolution element during the whole observing time.}, language = {en} } @article{DenkerKuckeinVermaetal.2018, author = {Denker, Carsten and Kuckein, Christoph and Verma, Meetu and Manrique Gonzalez, Sergio Javier Gonzalez and Diercke, Andrea and Enke, Harry and Klar, Jochen and Balthasar, Horst and Louis, Rohan E. and Dineva, Ekaterina}, title = {High-cadence Imaging and Imaging Spectroscopy at the GREGOR Solar Telescope-A Collaborative Research Environment for High-resolution Solar Physics}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Supplement series}, volume = {236}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Supplement series}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0067-0049}, doi = {10.3847/1538-4365/aab773}, pages = {12}, year = {2018}, abstract = {In high-resolution solar physics, the volume and complexity of photometric, spectroscopic, and polarimetric ground-based data significantly increased in the last decade, reaching data acquisition rates of terabytes per hour. This is driven by the desire to capture fast processes on the Sun and the necessity for short exposure times "freezing" the atmospheric seeing, thus enabling ex post facto image restoration. Consequently, large-format and high-cadence detectors are nowadays used in solar observations to facilitate image restoration. Based on our experience during the "early science" phase with the 1.5 m GREGOR solar telescope (2014-2015) and the subsequent transition to routine observations in 2016, we describe data collection and data management tailored toward image restoration and imaging spectroscopy. We outline our approaches regarding data processing, analysis, and archiving for two of GREGOR's post-focus instruments (see http://gregor.aip.de), i.e., the GREGOR Fabry-P{\´e}rot Interferometer (GFPI) and the newly installed High-Resolution Fast Imager (HiFI). The heterogeneous and complex nature of multidimensional data arising from high-resolution solar observations provides an intriguing but also a challenging example for "big data" in astronomy. The big data challenge has two aspects: (1) establishing a workflow for publishing the data for the whole community and beyond and (2) creating a collaborative research environment (CRE), where computationally intense data and postprocessing tools are colocated and collaborative work is enabled for scientists of multiple institutes. This requires either collaboration with a data center or frameworks and databases capable of dealing with huge data sets based on virtual observatory (VO) and other community standards and procedures.}, language = {en} } @article{DierckeKuckeinVermaetal.2018, author = {Diercke, Andrea and Kuckein, Christoph and Verma, Meetu and Denker, Carsten}, title = {Counter-streaming flows in a giant quiet-Sun filament observed in the extreme ultraviolet}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {611}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201730536}, pages = {11}, year = {2018}, abstract = {Aims. The giant solar filament was visible on the solar surface from 2011 November 8-23. Multiwavelength data from the Solar Dynamics Observatory (SDO) were used to examine counter-streaming flows within the spine of the filament. Methods. We use data from two SDO instruments, the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI), covering the whole filament, which stretched over more than half a solar diameter. H alpha images from the Kanzelhohe Solar Observatory (KSO) provide context information of where the spine of the filament is defined and the barbs are located. We apply local correlation tracking (LCT) to a two-hour time series on 2011 November 16 of the AIA images to derive horizontal flow velocities of the filament. To enhance the contrast of the AIA images, noise adaptive fuzzy equalization (NAFE) is employed, which allows us to identify and quantify counter-streaming flows in the filament. We observe the same cool filament plasma in absorption in both H alpha and EUV images. Hence, the counter-streaming flows are directly related to this filament material in the spine. In addition, we use directional flow maps to highlight the counter-streaming flows. Results. We detect counter-streaming flows in the filament, which are visible in the time-lapse movies in all four examined AIA wavelength bands (lambda 171 angstrom, lambda 193 angstrom, lambda 304 angstrom, and lambda 211 angstrom). In the time-lapse movies we see that these persistent flows lasted for at least two hours, although they became less prominent towards the end of the time series. Furthermore, by applying LCT to the images we clearly determine counter-streaming flows in time series of lambda 171 angstrom and lambda 193 angstrom images. In the lambda 304 angstrom wavelength band, we only see minor indications for counter-streaming flows with LCT, while in the lambda 211 angstrom wavelength band the counter-streaming flows are not detectable with this method. The diverse morphology of the filament in H alpha and EUV images is caused by different absorption processes, i.e., spectral line absorption and absorption by hydrogen and helium continua, respectively. The horizontal flows reach mean flow speeds of about 0.5 km s(-1) for all wavelength bands. The highest horizontal flow speeds are identified in the lambda 171 angstrom band with flow speeds of up to 2.5 km s(-1). The results are averaged over a time series of 90 minutes. Because the LCT sampling window has finite width, a spatial degradation cannot be avoided leading to lower estimates of the flow velocities as compared to feature tracking or Doppler measurements. The counter-streaming flows cover about 15-20\% of the whole area of the EUV filament channel and are located in the central part of the spine. Conclusions. Compared to the ground-based observations, the absence of seeing effects in AIA observations reveal counter-streaming flows in the filament even with a moderate image scale of 0 '.6 pixel(-1). Using a contrast enhancement technique, these flows can be detected and quantified with LCT in different wavelengths. We confirm the omnipresence of counter-streaming flows also in giant quiet-Sun filaments.}, language = {en} } @article{DenkerDinevaBalthasaretal.2018, author = {Denker, Carsten and Dineva, Ekaterina and Balthasar, Horst and Verma, Meetu and Kuckein, Christoph and Diercke, Andrea and Manrique Gonzalez, Sergio Javier Gonzalez}, title = {Image Quality in High-resolution and High-cadence Solar Imaging}, series = {Solar physics : a journal for solar and solar-stellar research and the study of solar terrestrial physics}, volume = {293}, journal = {Solar physics : a journal for solar and solar-stellar research and the study of solar terrestrial physics}, number = {3}, publisher = {Springer}, address = {Dordrecht}, issn = {0038-0938}, doi = {10.1007/s11207-018-1261-1}, pages = {24}, year = {2018}, abstract = {Broad-band imaging and even imaging with a moderate bandpass (about 1 nm) provides a photon-rich environment, where frame selection (lucky imaging) becomes a helpful tool in image restoration, allowing us to perform a cost-benefit analysis on how to design observing sequences for imaging with high spatial resolution in combination with real-time correction provided by an adaptive optics (AO) system. This study presents high-cadence (160 Hz) G-band and blue continuum image sequences obtained with the High-resolution Fast Imager (HiFI) at the 1.5-meter GREGOR solar telescope, where the speckle-masking technique is used to restore images with nearly diffraction-limited resolution. The HiFI employs two synchronized large-format and high-cadence sCMOS detectors. The median filter gradient similarity (MFGS) image-quality metric is applied, among others, to AO-corrected image sequences of a pore and a small sunspot observed on 2017 June 4 and 5. A small region of interest, which was selected for fast-imaging performance, covered these contrastrich features and their neighborhood, which were part of Active Region NOAA 12661. Modifications of theMFGS algorithm uncover the field-and structure-dependency of this imagequality metric. However, MFGS still remains a good choice for determining image quality without a priori knowledge, which is an important characteristic when classifying the huge number of high-resolution images contained in data archives. In addition, this investigation demonstrates that a fast cadence and millisecond exposure times are still insufficient to reach the coherence time of daytime seeing. Nonetheless, the analysis shows that data acquisition rates exceeding 50 Hz are required to capture a substantial fraction of the best seeing moments, significantly boosting the performance of post-facto image restoration.}, language = {en} } @article{VermaDenkerBalthasaretal.2018, author = {Verma, Meetu and Denker, Carsten and Balthasar, H. and Kuckein, Christoph and Rezaei, R. and Sobotka, Michal and Deng, N. and Wang, Haimin and Tritschler, A. and Collados, M. and Diercke, Andrea and Gonz{\´a}lez Manrique, Sergio Javier}, title = {High-resolution imaging and near-infrared spectroscopy of penumbral decay}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {614}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201731801}, pages = {14}, year = {2018}, abstract = {Aims. Combining high-resolution spectropolarimetric and imaging data is key to understanding the decay process of sunspots as it allows us to scrutinize the velocity and magnetic fields of sunspots and their surroundings. Methods. Active region NOAA 12597 was observed on 2016 September 24 with the 1.5-meter GREGOR solar telescope using high-spatial-resolution imaging as well as imaging spectroscopy and near-infrared (NIR) spectropolarimetry. Horizontal proper motions were estimated with local correlation tracking, whereas line-of-sight (LOS) velocities were computed with spectral line fitting methods. The magnetic field properties were inferred with the "Stokes Inversions based on Response functions" (SIR) code for the Si I and Ca I NIR lines. Results. At the time of the GREGOR observations, the leading sunspot had two light bridges indicating the onset of its decay. One of the light bridges disappeared, and an elongated, dark umbral core at its edge appeared in a decaying penumbral sector facing the newly emerging flux. The flow and magnetic field properties of this penumbral sector exhibited weak Evershed flow, moat flow, and horizontal magnetic field. The penumbral gap adjacent to the elongated umbral core and the penumbra in that penumbral sector displayed LOS velocities similar to granulation. The separating polarities of a new flux system interacted with the leading and central part of the already established active region. As a consequence, the leading spot rotated 55 degrees clockwise over 12 h. Conclusions. In the high-resolution observations of a decaying sunspot, the penumbral filaments facing the flux emergence site contained a darkened area resembling an umbral core filled with umbral dots. This umbral core had velocity and magnetic field properties similar to the sunspot umbra. This implies that the horizontal magnetic fields in the decaying penumbra became vertical as observed in flare-induced rapid penumbral decay, but on a very different time-scale.}, language = {en} } @article{KuckeinDierckeGonzalezManriqueetal.2017, author = {Kuckein, Christoph and Diercke, Andrea and Gonz{\´a}lez Manrique, Sergio Javier and Verma, Meetu and Loehner-Boettcher, Johannes and Socas-Navarro, H. and Balthasar, Horst and Sobotka, M. and Denker, Carsten}, title = {Ca II 8542 angstrom brightenings induced by a solar microflare}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {608}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201731319}, pages = {13}, year = {2017}, abstract = {Aims. We study small-scale brightenings in Ca II 8542 angstrom line-core images to determine their nature and effect on localized heating and mass transfer in active regions. Methods. High-resolution two-dimensional spectroscopic observations of a solar active region in the near-infrared Ca II 8542 angstrom line were acquired with the GREGOR Fabry-Perot Interferometer attached to the 1.5-m GREGOR telescope. Inversions of the spectra were carried out using the NICOLE code to infer temperatures and line-of-sight (LOS) velocities. Response functions of the Ca II line were computed for temperature and LOS velocity variations. Filtergrams of the Atmospheric Imaging Assembly (AIA) and magnetograms of the Helioseismic and Magnetic Imager (HMI) were coaligned to match the ground-based observations and to follow the Ca II brightenings along all available layers of the atmosphere. Results. We identified three brightenings of sizes up to 2 ' x 2 ' that appeared in the Ca II 8542 angstrom line-core images. Their lifetimes were at least 1.5 min. We found evidence that the brightenings belonged to the footpoints of a microflare (MF). The properties of the observed brightenings disqualified the scenarios of Ellerman bombs or Interface Region Imaging Spectrograph (IRIS) bombs. However, this MF shared some common properties with flaring active-region fibrils or flaring arch filaments (FAFs): (1) FAFs and MFs are both apparent in chromospheric and coronal layers according to the AIA channels; and (2) both show flaring arches with lifetimes of about 3.0-3.5 min and lengths of similar to 20 ' next to the brightenings. The inversions revealed heating by 600 K at the footpoint location in the ambient chromosphere during the impulsive phase. Connecting the footpoints, a dark filamentary structure appeared in the Ca II line-core images. Before the start of the MF, the spectra of this structure already indicated average blueshifts, meaning upward motions of the plasma along the LOS. During the impulsive phase, these velocities increased up to -2.2 km s(-1). The structure did not disappear during the observations. Downflows dominated at the footpoints. However, in the upper photosphere, slight upflows occurred during the impulsive phase. Hence, bidirectional flows are present in the footpoints of the MF.}, language = {en} } @article{GoemoeryBalthasarKuckeinetal.2017, author = {G{\"o}m{\"o}ry, Peter and Balthasar, Horst and Kuckein, Christoph and Koza, Julis and Veronig, Astrid M. and Gonz{\´a}lez Manrique, Sergio Javier and Kucera, Ales and Schwartz, Pavol and Hanslmeier, Arnold}, title = {Flare-induced changes of the photospheric magnetic field in a delta-spot deduced from ground-based observations}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {602}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201730644}, pages = {14 -- 27}, year = {2017}, abstract = {Aims. Changes of the magnetic field and the line-of-sight velocities in the photosphere are being reported for an M-class flare that originated at a delta-spot belonging to active region NOAA 11865. Methods. High-resolution ground-based near-infrared spectropolarimetric observations were acquired simultaneously in two photospheric spectral lines, Fe I 10783 angstrom and Si I 10786 angstrom, with the Tenerife Infrared Polarimeter at the Vacuum Tower Telescope (VTT) in Tenerife on 2013 October 15. The observations covered several stages of the M-class flare. Inversions of the full-Stokes vector of both lines were carried out and the results were put into context using (extreme)-ultraviolet filtergrams from the Solar Dynamics Observatory (SDO). Results. The active region showed high flaring activity during the whole observing period. After the M-class flare, the longitudinal magnetic field did not show significant changes along the polarity inversion line (PIL). However, an enhancement of the transverse magnetic field of approximately 550G was found that bridges the PIL and connects umbrae of opposite polarities in the delta-spot. At the same time, a newly formed system of loops appeared co-spatially in the corona as seen in 171 angstrom filtergrams of the Atmospheric Imaging Assembly (AIA) on board SDO. However, we cannot exclude that the magnetic connection between the umbrae already existed in the upper atmosphere before the M-class flare and became visible only later when it was filled with hot plasma. The photospheric Doppler velocities show a persistent upflow pattern along the PIL without significant changes due to the flare. Conclusions. The increase of the transverse component of the magnetic field after the flare together with the newly formed loop system in the corona support recent predictions of flare models and flare observations.}, language = {en} }