@article{LevermannAlbrechtWinkelmannetal.2012, author = {Levermann, Anders and Albrecht, Tanja and Winkelmann, Ricarda and Martin, Maria A. and Haseloff, Monika and Joughin, I.}, title = {Kinematic first-order calving law implies potential for abrupt ice-shelf retreat}, series = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, volume = {6}, journal = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, number = {2}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1994-0416}, doi = {10.5194/tc-6-273-2012}, pages = {273 -- 286}, year = {2012}, abstract = {Recently observed large-scale disintegration of Antarctic ice shelves has moved their fronts closer towards grounded ice. In response, ice-sheet discharge into the ocean has accelerated, contributing to global sea-level rise and emphasizing the importance of calving-front dynamics. The position of the ice front strongly influences the stress field within the entire sheet-shelf-system and thereby the mass flow across the grounding line. While theories for an advance of the ice-front are readily available, no general rule exists for its retreat, making it difficult to incorporate the retreat in predictive models. Here we extract the first-order large-scale kinematic contribution to calving which is consistent with large-scale observation. We emphasize that the proposed equation does not constitute a comprehensive calving law but represents the first-order kinematic contribution which can and should be complemented by higher order contributions as well as the influence of potentially heterogeneous material properties of the ice. When applied as a calving law, the equation naturally incorporates the stabilizing effect of pinning points and inhibits ice shelf growth outside of embayments. It depends only on local ice properties which are, however, determined by the full topography of the ice shelf. In numerical simulations the parameterization reproduces multiple stable fronts as observed for the Larsen A and B Ice Shelves including abrupt transitions between them which may be caused by localized ice weaknesses. We also find multiple stable states of the Ross Ice Shelf at the gateway of the West Antarctic Ice Sheet with back stresses onto the sheet reduced by up to 90 \% compared to the present state.}, language = {en} } @article{WinkelmannMartinHaseloffetal.2011, author = {Winkelmann, Ricarda and Martin, Maria A. and Haseloff, Monika and Albrecht, Torsten and Bueler, Ed and Khroulev, C. and Levermann, Anders}, title = {The Potsdam parallel ice sheet model (PISM-PIK) - Part 1: Model description}, series = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, volume = {5}, journal = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, number = {3}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1994-0416}, doi = {10.5194/tc-5-715-2011}, pages = {715 -- 726}, year = {2011}, abstract = {We present the Potsdam Parallel Ice Sheet Model (PISM-PIK), developed at the Potsdam Institute for Climate Impact Research to be used for simulations of large-scale ice sheet-shelf systems. It is derived from the Parallel Ice Sheet Model (Bueler and Brown, 2009). Velocities are calculated by superposition of two shallow stress balance approximations within the entire ice covered region: the shallow ice approximation (SIA) is dominant in grounded regions and accounts for shear deformation parallel to the geoid. The plug-flow type shallow shelf approximation (SSA) dominates the velocity field in ice shelf regions and serves as a basal sliding velocity in grounded regions. Ice streams can be identified diagnostically as regions with a significant contribution of membrane stresses to the local momentum balance. All lateral boundaries in PISM-PIK are free to evolve, including the grounding line and ice fronts. Ice shelf margins in particular are modeled using Neumann boundary conditions for the SSA equations, reflecting a hydrostatic stress imbalance along the vertical calving face. The ice front position is modeled using a subgrid-scale representation of calving front motion (Albrecht et al., 2011) and a physically-motivated calving law based on horizontal spreading rates. The model is tested in experiments from the Marine Ice Sheet Model Intercomparison Project (MISMIP). A dynamic equilibrium simulation of Antarctica under present-day conditions is presented in Martin et al. (2011).}, language = {en} } @article{BartschZschalerHaseloffetal.2003, author = {Bartsch, Ingrid and Zschaler, Ingrid and Haseloff, Monika and Steinberg, Pablo}, title = {Establishment of a long-term culture system for rat colon epithelial cells}, issn = {1071-2690}, doi = {10.1290/0404035.1}, year = {2003}, abstract = {The aim of this study was to establish a long-term culture. system for rat colon epithelia isolaled by incubating a 4-cm-long rat colon segment cut longitudinally with all ethylenediaminetetraacetic acid [disodium salt]- containing buffer, taken up in conditioned medium from the normal rat kidney fibroblast cell line NRK (i.e., the supernatant Of pure NRK cultures), directly plated on mitomycin C-treated NRK cells and subcultured with conditioned medium from NRK cells. Cells started to migrate out of the crypts shortly after plating them on NRK feeder layers. Some of the crypts fell apart during the isolation procedure. whereas the vast majority of them did it within I to 2 Ill after plating. The cells proliferated extremely slowly but continuously over a period of 4 mo and were epithelial because they expressed cytokeratin 19 and were stained by crystal violet at pH 2.8. In conclusion, the experimental system described ill this study allows to maintain rat colon epithelial cells for up to 4 mo in culture and can be used to Study the effects of a variety of tumor-modulating factors on growth and gene expression of normal colon epithelial cells in vitro}, language = {en} }