@article{HasslerLarkZimmermannetal.2014, author = {Haßler, Sibylle Kathrin and Lark, R. M. and Zimmermann, Beate and Elsenbeer, Helmut}, title = {Which sampling design to monitor saturated hydraulic conductivity?}, series = {European journal of soil science}, volume = {65}, journal = {European journal of soil science}, number = {6}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1351-0754}, doi = {10.1111/ejss.12174}, pages = {792 -- 802}, year = {2014}, abstract = {Soil in a changing world is subject to both anthropogenic and environmental stresses. Soil monitoring is essential to assess the magnitude of changes in soil variables and how they affect ecosystem processes and human livelihoods. However, we cannot always be sure which sampling design is best for a given monitoring task. We employed a rotational stratified simple random sampling (rotStRS) for the estimation of temporal changes in the spatial mean of saturated hydraulic conductivity (K-s) at three sites in central Panama in 2009, 2010 and 2011. To assess this design's efficiency we compared the resulting estimates of the spatial mean and variance for 2009 with those gained from stratified simple random sampling (StRS), which was effectively the data obtained on the first sampling time, and with an equivalent unexecuted simple random sampling (SRS). The poor performance of geometrical stratification and the weak predictive relationship between measurements of successive years yielded no advantage of sampling designs more complex than SRS. The failure of stratification may be attributed to the small large-scale variability of K-s. Revisiting previously sampled locations was not beneficial because of the large small-scale variability in combination with destructive sampling, resulting in poor consistency between revisited samples. We conclude that for our K-s monitoring scheme, repeated SRS is equally effective as rotStRS. Some problems of small-scale variability might be overcome by collecting several samples at close range to reduce the effect of small-scale variation. Finally, we give recommendations on the key factors to consider when deciding whether to use stratification and rotation in a soil monitoring scheme.}, language = {en} } @article{HasslerZimmermannvanBreugeletal.2011, author = {Haßler, Sibylle Kathrin and Zimmermann, Beate and van Breugel, Michiel and Hall, Jefferson S. and Elsenbeer, Helmut}, title = {Recovery of saturated hydraulic conductivity under secondary succession on former pasture in the humid tropics}, series = {Forest ecology and management}, volume = {261}, journal = {Forest ecology and management}, number = {10}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0378-1127}, doi = {10.1016/j.foreco.2010.06.031}, pages = {1634 -- 1642}, year = {2011}, abstract = {Landscapes in the humid tropics are undergoing a continuous change in land use. Deforestation is still taking its toll on forested areas, but at the same time more and more secondary forests emerge where formerly agricultural lands and pastures are being abandoned. Regarding soil hydrology, the extent to which secondary succession can recover soil hydrological properties disturbed by antecedent deforestation and pasture use is yet poorly understood. We investigated the effect of secondary succession on saturated hydraulic conductivity (Ks) at two soil depths (0-6 and 6-12 cm) using a space-for-time approach in a landscape mosaic in central Panama. The following four land-use classes were studied: pasture (P), secondary forest of 5-8 years of age (SF5), secondary forest of 12-15 years of age (SF12) and secondary forest of more than 100 years of age (SF100), each replicated altogether four times in different micro-catchments across the study region. The hydrological implications of differences in Ks in response to land-use change with land use, especially regarding overland flow generation, were assessed via comparisons with rainfall intensities. Recovery of Ks could be detected in the 0-6 cm depth after 12 years of secondary succession: P and SF5 held similar Ks values, but differed significantly (alpha = 0.05) from SF12 and SF100 which in turn were indistinguishable. Variability within the land cover classes was large but, due to sufficient replication in the study, Ks recovery could be detected nonetheless. Ks in the 6-12 cm depth did not show any differences between the land cover classes; only Ks of the uppermost soil layer was affected by land-use changes. Overland flow - as inferred from comparisons of Ks with rainfall intensities - is more likely on P and SF5 sites compared to SF12 and 5E100 for the upper sample depth; however, generally low values at the 6-12 cm depth are likely to impede vertical percolation during high rainfall intensities regardless of land use. We conclude that Ks can recover from pasture use under secondary succession up to pre-pasture levels, but the process may take more than 8 years. In order to gain comprehensive understanding of Ks change with land use and its hydrological implications, more studies with detailed land-use histories and combined measurements of Ks, overland flow, precipitation and throughfall are essential.}, language = {en} } @article{HasslerLarkMilneetal.2011, author = {Haßler, Sibylle Kathrin and Lark, Richard M. and Milne, A. E. and Elsenbeer, Helmut}, title = {Exploring the variation in soil saturated hydraulic conductivity under a tropical rainforest using the wavelet transform}, series = {European journal of soil science}, volume = {62}, journal = {European journal of soil science}, number = {6}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {1351-0754}, doi = {10.1111/j.1365-2389.2011.01400.x}, pages = {891 -- 901}, year = {2011}, abstract = {Saturated hydraulic conductivity (Ks) of the soil is a key variable in the water cycle. For the humid tropics, information about spatial scales of Ks and their relation to soil types deduced from soil map units is of interest, as soil maps are often the only available data source for modelling. We examined the influence of soil map units on the mean and variation in Ks along a transect in a tropical rainforest using undisturbed soil cores at 06 and 612 cm depth. The Ks means were estimated with a linear mixed model fitted by residual maximum likelihood (REML), and the spatial variation in Ks was investigated with the maximum overlap discrete wavelet packet transform (MODWPT). The mean values of Ks did not differ between soil map units. The best wavelet packet basis for Ks at 06 cm showed stationarity at high frequencies, suggesting uniform small-scale influences such as bioturbation. There were substantial contributions to wavelet packet variance over the range of spatial frequencies and a pronounced low frequency peak corresponding approximately to the scale of soil map units. However, in the relevant frequency intervals no significant changes in wavelet packet variance were detected. We conclude that near-surface Ks is not dominated by static, soil-inherent properties for the examined range of soils. Several indicators from the wavelet packet analysis hint at the more dominant dynamic influence of biotic processes, which should be kept in mind when modelling soil hydraulic properties on the basis of soil maps.}, language = {en} } @article{HasslerKreylingBeierkuhnleinetal.2010, author = {Haßler, Sibylle Kathrin and Kreyling, J{\"u}rgen and Beierkuhnlein, Carl and Eisold, Jenny and Samimi, Cyrus and Wagenseil, H. and Jentsch, A.}, title = {Vegetation pattern divergence between dry and wet season in a semiarid savanna : spatio-temporal dynamics of plant diversity in northwest Namibia}, issn = {0140-1963}, doi = {10.1016/j.jaridenv.2010.05.021}, year = {2010}, abstract = {African savannas are primarily used as pastures and are subject to changes in climate and management strategies. For sustainable management of these landscapes ecological knowledge on seasonal and long-term variability in plant community composition and the availability of green biomass is essential. In this study, we assessed the effects of dry and wet season on species richness and beta diversity for three sites along a gradient of increasing vegetation cover and precipitation in northwest Namibia. A hexagonal systematic sampling design was used to record floristic data. The Simple Matching, Soerensen, and multi-plot similarity coefficient and distance decay analyses were applied for examining beta diversity. Analyses were repeated while separating the plots according to the presence of woody vegetation. Species richness nearly doubled from dry to wet season; compositional similarity increased from dry to wet season and with increasing aridity of the study sites: distance decay was more pronounced in the dry season without any link to the precipitation gradient. Woody elements in the landscape, which occur along drainage lines or as tree islands, govern spatial and seasonal plant diversity fluctuations. Monitoring them is important for conservation strategies and for establishing grazing rules that ensure a sustainable use of savanna ecosystems.}, language = {en} }