@article{ELAshkerChaabenePrieske2022, author = {EL-Ashker, Said and Chaabene, Helmi and Prieske, Olaf}, title = {Maximal isokinetic elbow and knee flexor-extensor strength measures in combat sports athletes: the role of movement velocity and limb side}, series = {BMC Sports Science, Medicine and Rehabilitation}, volume = {13}, journal = {BMC Sports Science, Medicine and Rehabilitation}, publisher = {Springer Nature}, address = {London}, issn = {1758-2555}, doi = {10.1186/s13102-022-00432-2}, pages = {10}, year = {2022}, abstract = {Background Maximal isokinetic strength ratios of joint flexors and extensors are important parameters to indicate the level of muscular balance at the joint. Further, in combat sports athletes, upper and lower limb muscle strength is affected by the type of sport. Thus, this study aimed to examine the differences in maximal isokinetic strength of the flexors and extensors and the corresponding flexor-extensor strength ratios of the elbows and knees in combat sports athletes. Method Forty male participants (age = 22.3 ± 2.5 years) from four different combat sports (amateur boxing, taekwondo, karate, and judo; n = 10 per sport) were tested for eccentric peak torque of the elbow/knee flexors (EF/KF) and concentric peak torque of the elbow/knee extensors (EE/KE) at three different angular velocities (60, 120, and 180°/s) on the dominant and non-dominant side using an isokinetic device. Results Analyses revealed significant, large-sized group × velocity × limb interactions for EF, EE, and EF-EE ratio, KF, KE, and KF-KE ratio (p ≤ 0.03; 0.91 ≤ d ≤ 1.75). Post-hoc analyses indicated that amateur boxers displayed the largest EE strength values on the non-dominant side at ≤ 120°/s and the dominant side at ≥ 120°/s (p < 0.03; 1.21 ≤ d ≤ 1.59). The largest EF-EE strength ratios were observed on amateur boxers' and judokas' non-dominant side at ≥ 120°/s (p < 0.04; 1.36 ≤ d ≤ 2.44). Further, we found lower KF-KE strength measures in karate (p < 0.04; 1.12 ≤ d ≤ 6.22) and judo athletes (p ≤ 0.03; 1.60 ≤ d ≤ 5.31) particularly on the non-dominant side. Conclusions The present findings indicated combat sport-specific differences in maximal isokinetic strength measures of EF, EE, KF, and KE particularly in favor of amateur boxers on the non-dominant side.}, language = {en} } @article{SaalChaabeneHelmetal.2022, author = {Saal, Christian and Chaabene, Helmi and Helm, Norman and Warnke, Torsten and Prieske, Olaf}, title = {Network analysis of associations between anthropometry, physical fitness, and sport-specific performance in young canoe sprint athletes}, series = {Frontiers in sports and active living}, volume = {4}, journal = {Frontiers in sports and active living}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2624-9367}, doi = {10.3389/fspor.2022.1038350}, pages = {13}, year = {2022}, abstract = {Introduction Anthropometric and physical fitness data can predict sport-specific performance (e.g., canoe sprint race time) in young athletes. Of note, inter-item correlations (i.e., multicollinearity) may exist between tests assessing similar physical qualities. However, multicollinearity among tests may change across age and/or sex due to age-/sex-specific non-linear development of test performances. Therefore, the present study aimed at analyzing inter-item correlations between anthropometric, physical fitness, and sport-specific performance data as a function of age and sex in young canoe sprint athletes. Methods Anthropometric, physical fitness, and sport-specific performance data of 618 male and 297 female young canoe sprint athletes (discipline: male/female kayak, male canoe) were recorded during a national talent identification program between 1992 and 2019. For each discipline, a correlation matrix (i.e., network analysis) was calculated for age category (U13, U14, U15, U16) and sex including anthropometrics (e.g., standing body height, body mass), physical fitness (e.g., cardiorespiratory endurance, muscle power), and sport-specific performance (i.e., 250 and 2,000-m on-water canoe sprint time). Network plots were used to explore the correlation patterns by visual inspection. Further, trimmed means (mu(trimmed)) of inter-item Pearson's correlations coefficients were calculated for each discipline, age category, and sex. Effects of age and sex were analyzed using one-way ANOVAs. Results Visual inspection revealed consistent associations among anthropometric measures across age categories, irrespective of sex. Further, associations between physical fitness and sport-specific performance were lower with increasing age, particularly in males. In this sense, statistically significant differences for mu(trimmed) were observed in male canoeists (p < 0.01, xi = 0.36) and male kayakers (p < 0.01, xi = 0.38) with lower mu(trimmed) in older compared with younger athletes (i.e., >= U15). For female kayakers, no statistically significant effect of age on mu(trimmed) was observed (p = 0.34, xi = 0.14). Discussion Our study revealed that inter-item correlation patterns (i.e., multicollinearity) of anthropometric, physical fitness, and sport-specific performance measures were lower in older (U15, U16) versus younger (U13, U14) male canoe sprint athletes but not in females. Thus, age and sex should be considered to identify predictors for sport-specific performance and design effective testing batteries for talent identification programs in canoe sprint athletes.}, language = {en} } @article{MoranValiDruryetal.2022, author = {Moran, Jason and Vali, Norodin and Drury, Ben and Hammami, Raouf and Tallent, Jamie and Chaabene, Helmi and Ramirez-Campillo, Rodrigo}, title = {The effect of volume equated 1-versus 2-day formats of Nordic hamstring exercise training on fitness in youth soccer players}, series = {PLOS ONE}, volume = {17}, journal = {PLOS ONE}, number = {12}, publisher = {PLOS}, address = {San Francisco, California, US}, issn = {1932-6203}, doi = {10.1371/journal.pone.0277437}, pages = {13}, year = {2022}, abstract = {Purpose This randomised controlled trial examined the effect of an 8-week volume-equated programme of Nordic hamstring exercise (NHE) training, executed at frequencies of 1- or 2-days per week, on fitness (10 m and 40 m sprint, '505' change of direction [COD] and standing long jump [SLJ]) in male youth soccer players (mean age: 16.4 0.81 years). Method Players were divided into an experimental group (n = 16) which was further subdivided into 1-day (n = 8) and 2-day (n = 8) per week training groups and a control group (n = 8). Results There were significant group-by-time interactions for 10-m sprint (p<0.001, eta(2) = 0.120, d = 2.05 [0.57 to 3.53]), 40-m sprint (p = 0.001, eta(2) = 0.041, d = 1.09 [-0.23 to 2.4]) and COD (p = 0.002, eta(2) = 0.063, d = 1.25 [-0.09 to 2.59). The experimental group demonstrated a 'very large' effect size (d = 3.02 [1.5 to 4.54]) in 10-m sprint, and 'large' effect sizes in 40-m sprint (d = 1.94 [0.98 to 2.90]) and COD (d = 1.84 [0.85 to 2.83). The control group showed no significant changes. There were no significant differences between the 1-day and 2-day training groups. In three of the four tests (40 m, COD, SLJ) the 2-day group demonstrated larger effect sizes. Ratings of perceived exertion (RPE) were significantly lower in the 2-day group (p<0.001, 3.46 [1.83 to 5.04). Conclusion The NHE increases fitness in youth soccer players and there may be advantages to spreading training over two days instead of one.}, language = {en} } @article{RamirezCampilloPerezCastillaThapaetal.2022, author = {Ramirez-Campillo, Rodrigo and P{\´e}rez-Castilla, Alejandro and Thapa, Rohit Kumar and Afonso, Jos{\´e} and Clemente, Filipe Manuel Batista and Colado, Juan C. and Eduardo, Sa{\´e}z de Villarreal and Chaabene, Helmi}, title = {Effects of Plyometric Jump Training on Measures of Physical Fitness and Sport-Specific Performance of Water Sports Athletes}, series = {Sports Medicine - Open}, volume = {8}, journal = {Sports Medicine - Open}, publisher = {Springer}, address = {Berlin}, issn = {2198-9761}, doi = {10.1186/s40798-022-00502-2}, pages = {1 -- 27}, year = {2022}, abstract = {Background A growing body of literature is available regarding the effects of plyometric jump training (PJT) on measures of physical fitness (PF) and sport-specific performance (SSP) in-water sports athletes (WSA, i.e. those competing in sports that are practiced on [e.g. rowing] or in [e.g. swimming; water polo] water). Indeed, incoherent findings have been observed across individual studies making it difficult to provide the scientific community and coaches with consistent evidence. As such, a comprehensive systematic literature search should be conducted to clarify the existent evidence, identify the major gaps in the literature, and offer recommendations for future studies. Aim To examine the effects of PJT compared with active/specific-active controls on the PF (one-repetition maximum back squat strength, squat jump height, countermovement jump height, horizontal jump distance, body mass, fat mass, thigh girth) and SSP (in-water vertical jump, in-water agility, time trial) outcomes in WSA, through a systematic review with meta-analysis of randomized and non-randomized controlled studies. Methods The electronic databases PubMed, Scopus, and Web of Science were searched up to January 2022. According to the PICOS approach, the eligibility criteria were: (population) healthy WSA; (intervention) PJT interventions involving unilateral and/or bilateral jumps, and a minimal duration of ≥ 3 weeks; (comparator) active (i.e. standard sports training) or specific-active (i.e. alternative training intervention) control group(s); (outcome) at least one measure of PF (e.g. jump height) and/or SSP (e.g. time trial) before and after training; and (study design) multi-groups randomized and non-randomized controlled trials. The Physiotherapy Evidence Database (PEDro) scale was used to assess the methodological quality of the included studies. The DerSimonian and Laird random-effects model was used to compute the meta-analyses, reporting effect sizes (ES, i.e. Hedges' g) with 95\% confidence intervals (95\% CIs). Statistical significance was set at p ≤ 0.05. Certainty or confidence in the body of evidence for each outcome was assessed using Grading of Recommendations Assessment, Development, and Evaluation (GRADE), considering its five dimensions: risk of bias in studies, indirectness, inconsistency, imprecision, and risk of publication bias. Results A total of 11,028 studies were identified with 26 considered eligible for inclusion. The median PEDro score across the included studies was 5.5 (moderate-to-high methodological quality). The included studies involved a total of 618 WSA of both sexes (330 participants in the intervention groups [31 groups] and 288 participants in the control groups [26 groups]), aged between 10 and 26 years, and from different sports disciplines such as swimming, triathlon, rowing, artistic swimming, and water polo. The duration of the training programmes in the intervention and control groups ranged from 4 to 36 weeks. The results of the meta-analysis indicated no effects of PJT compared to control conditions (including specific-active controls) for in-water vertical jump or agility (ES =  - 0.15 to 0.03; p = 0.477 to 0.899), or for body mass, fat mass, and thigh girth (ES = 0.06 to 0.15; p = 0.452 to 0.841). In terms of measures of PF, moderate-to-large effects were noted in favour of the PJT groups compared to the control groups (including specific-active control groups) for one-repetition maximum back squat strength, horizontal jump distance, squat jump height, and countermovement jump height (ES = 0.67 to 1.47; p = 0.041 to < 0.001), in addition to a small effect noted in favour of the PJT for SSP time-trial speed (ES = 0.42; p = 0.005). Certainty of evidence across the included studies varied from very low-to-moderate. Conclusions PJT is more effective to improve measures of PF and SSP in WSA compared to control conditions involving traditional sport-specific training as well as alternative training interventions (e.g. resistance training). It is worth noting that the present findings are derived from 26 studies of moderate-to-high methodological quality, low-to-moderate impact of heterogeneity, and very low-to-moderate certainty of evidence based on GRADE. Trial registration The protocol for this systematic review with meta-analysis was published in the Open Science platform (OSF) on January 23, 2022, under the registration doi https://doi.org/10.17605/OSF.IO/NWHS3 (internet archive link: https://archive.org/details/osf-registrations-nwhs3-v1).}, language = {en} } @article{BehrensGubeChaabeneetal.2022, author = {Behrens, Martin and Gube, Martin and Chaabene, Helmi and Prieske, Olaf and Zenon, Alexandre and Broscheid, Kim-Charline and Schega, Lutz and Husmann, Florian and Weippert, Matthias}, title = {Fatigue and human performance}, series = {Sports medicine : an international journal of applied medicine and science in sport and exercise}, volume = {53}, journal = {Sports medicine : an international journal of applied medicine and science in sport and exercise}, number = {1}, publisher = {Springer}, address = {Heidelberg}, issn = {0112-1642}, doi = {10.1007/s40279-022-01748-2}, pages = {7 -- 31}, year = {2022}, abstract = {Fatigue has been defined differently in the literature depending on the field of research. The inconsistent use of the term fatigue complicated scientific communication, thereby limiting progress towards a more in-depth understanding of the phenomenon. Therefore, Enoka and Duchateau (Med Sci Sports Exerc 48:2228-38, 2016, [3]) proposed a fatigue framework that distinguishes between trait fatigue (i.e., fatigue experienced by an individual over a longer period of time) and motor or cognitive task-induced state fatigue (i.e., self-reported disabling symptom derived from the two interdependent attributes performance fatigability and perceived fatigability). Thereby, performance fatigability describes a decrease in an objective performance measure, while perceived fatigability refers to the sensations that regulate the integrity of the performer. Although this framework served as a good starting point to unravel the psychophysiology of fatigue, several important aspects were not included and the interdependence of the mechanisms driving performance fatigability and perceived fatigability were not comprehensively discussed. Therefore, the present narrative review aimed to (1) update the fatigue framework suggested by Enoka and Duchateau (Med Sci Sports Exerc 48:2228-38, 2016, [3]) pertaining the taxonomy (i.e., cognitive performance fatigue and perceived cognitive fatigue were added) and important determinants that were not considered previously (e.g., effort perception, affective valence, self-regulation), (2) discuss the mechanisms underlying performance fatigue and perceived fatigue in response to motor and cognitive tasks as well as their interdependence, and (3) provide recommendations for future research on these interactions. We propose to define motor or cognitive task-induced state fatigue as a psychophysiological condition characterized by a decrease in motor or cognitive performance (i.e., motor or cognitive performance fatigue, respectively) and/or an increased perception of fatigue (i.e., perceived motor or cognitive fatigue). These dimensions are interdependent, hinge on different determinants, and depend on body homeostasis (e.g., wakefulness, core temperature) as well as several modulating factors (e.g., age, sex, diseases, characteristics of the motor or cognitive task). Consequently, there is no single factor primarily determining performance fatigue and perceived fatigue in response to motor or cognitive tasks. Instead, the relative weight of each determinant and their interaction are modulated by several factors.}, language = {en} } @article{MarkovHauserChaabene2022, author = {Markov, Adrian and Hauser, Lukas and Chaabene, Helmi}, title = {Effects of concurrent strength and endurance training on measures of physical fitness in healthy middle-aged and older adults}, series = {Sports medicine : an international journal of applied medicine and science in sport and exercise}, volume = {53}, journal = {Sports medicine : an international journal of applied medicine and science in sport and exercise}, number = {2}, publisher = {Springer}, address = {Heidelberg}, issn = {0112-1642}, doi = {10.1007/s40279-022-01764-2}, pages = {437 -- 455}, year = {2022}, abstract = {Background There is evidence that in older adults the combination of strength training (ST) and endurance training (ET) (i.e., concurrent training [CT]) has similar effects on measures of muscle strength and cardiorespiratory endurance (CRE) compared with single-mode ST or ET, respectively. Therefore, CT seems to be an effective method to target broad aspects of physical fitness in older adults. Objectives The aim was to examine the effects of CT on measures of physical fitness (i.e., muscle strength, power, balance and CRE) in healthy middle-aged and older adults aged between 50 and 73 years. We also aimed to identify key moderating variables to guide training prescription. Study Design We conducted a systematic review with meta-analysis of randomized controlled trials. Data Sources The electronic databases PubMed, Web of Science Core Collection, MEDLINE and Google Scholar were systematically searched until February 2022. Eligibility Criteria for Selecting Studies We included randomized controlled trials that examined the effects of CT versus passive controls on measures of physical fitness in healthy middle-aged and older adults aged between 50 and 73 years. Results Fifteen studies were eligible, including a total of 566 participants. CT induced moderate positive effects on muscle strength (standardized mean difference [SMD] = 0.74) and power (SMD = 0.50), with a small effect on CRE (SMD = 0.48). However, no significant effects were detected for balance (p > 0.05). Older adults > 65 years (SMD = 1.04) and females (SMD = 1.05) displayed larger improvements in muscle strength compared with adults <= 65 years old (SMD = 0.60) and males (SMD = 0.38), respectively. For CRE, moderate positive effects (SMD = 0.52) were reported in those <= 65 years old only, with relatively larger gains in females (SMD = 0.55) compared with males (SMD = 0.45). However, no significant differences between all subgroups were detected. Independent single training factor analysis indicated larger positive effects of 12 weeks (SMD = 0.87 and 0.88) compared with 21 weeks (SMD = 0.47 and 0.29) of CT on muscle strength and power, respectively, while for CRE, 21 weeks of CT resulted in larger gains (SMD = 0.62) than 12 weeks (SMD = 0.40). For CT frequency, three sessions per week produced larger beneficial effects (SMD = 0.91) on muscle strength compared with four sessions (SMD = 0.55), whereas for CRE, moderate positive effects were only noted after four sessions per week (SMD = 0.58). A session duration of > 30-60 min generated larger improvements in muscle strength (SMD = 0.99) and power (SMD = 0.88) compared with > 60-90 min (SMD = 0.40 and 0.29, respectively). However, for CRE, longer session durations (i.e., > 60-90 min) seem to be more effective (SMD = 0.61) than shorter ones (i.e., > 30-60 min) (SMD = 0.34). ET at moderate-to-near maximal intensities produced moderate (SMD = 0.64) and small positive effects (SMD = 0.49) on muscle strength and CRE, respectively, with no effects at low intensity ET (p > 0.05). Finally, intra-session ST before ET produced larger gains in muscle strength (SMD = 1.00) compared with separate sessions (SMD = 0.55), whereas ET and ST carried out separately induced larger improvements in CRE (SMD = 0.58) compared with intra-session ET before ST (SMD = 0.49). Conclusions CT is an effective method to improve measures of physical fitness (i.e., muscle strength, power, and CRE) in healthy middle-aged and older adults aged between 50 and 73 years, regardless of sex. Results of independent single training factor analysis indicated that the largest effects on muscle strength were observed after 12 weeks of training, > 30-60 min per session, three sessions per week, higher ET intensities and when ST preceded ET within the same session. For CRE, the largest effects were noted after 21 weeks of training, four sessions per week, > 60-90 min per session, higher ET intensities and when ET and ST sessions were performed separately. Regarding muscle power, the largest effects were observed after 12 weeks of training and > 30-60 min per session.}, language = {en} } @article{PrieskeChaabeneKullmannetal.2022, author = {Prieske, Olaf and Chaabene, Helmi and Kullmann, Niclas and Granacher, Urs}, title = {Effects of Individualized Versus Traditional Power Training on Strength, Power, Jump Performances, and Body Composition in Young Male Nordic Athletes}, series = {International journal of sports physiology and performance}, volume = {17}, journal = {International journal of sports physiology and performance}, number = {4}, publisher = {Human Kinetics Publ.}, address = {Champaign}, issn = {1555-0265}, doi = {10.1123/ijspp.2021-0074}, pages = {541 -- 548}, year = {2022}, abstract = {Purpose: This study aimed to examine the effects of individualized-load power training (IPT) versus traditional moderate-load power training (TPT) on strength, power, jump performance, and body composition in elite young Nordic athletes. Methods: In a randomized crossover design, 10 young male athletes (ski jumpers, Nordic combined athletes) age 17.5 (0.6) years (biological maturity status: +3.5 y postpeak height velocity) who competed on a national or international level performed 5 weeks of IPT (4 x 5 repetitions at 49\%-72\% 1-repetiton maximum [RM]) and TPT (5 x 5 repetitions at 50\%-60\% 1-RM) in addition to their regular training. Testing before, between, and after both training blocks comprised the assessment of muscle strength (loaded back squat 3-RM), power (maximal loaded back squat power), jump performance (eg, drop-jump height, reactive strength index), and body composition (eg, skeletal muscle mass). Results: Significant, large-size main effects for time were found for muscle strength (P < .01; g = 2.7), reactive strength index (P = .03; g= 1.6), and drop jump height (P = .02; g= 1.9) irrespective of the training condition (IPT, TPT). No significant time-by-condition interactions were observed. For measures of body composition, no significant main effects of condition and time or time-by-condition interactions were found. Conclusions: Our findings demonstrate that short-term IPT and TPT at moderate loads in addition to regular training were equally effective in improving measures of muscle strength (loaded back squat 3-RM) and vertical jump performance (reactive strength index, drop jump, and height) in young Nordic athletes.}, language = {en} } @article{PrieskeChaabeneMoranetal.2022, author = {Prieske, Olaf and Chaabene, Helmi and Moran, Jason and Saeterbakken, Atle Hole}, title = {Adaptations to Advanced Resistance Training Strategies in Youth and Adult Athletes}, series = {Frontiers in physiology / Frontiers Research Foundation}, volume = {13}, journal = {Frontiers in physiology / Frontiers Research Foundation}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2022.888118}, pages = {3}, year = {2022}, language = {en} } @article{ArntzMkaouerMarkovetal.2022, author = {Arntz, Fabian and Mkaouer, Bessem and Markov, Adrian and Schoenfeld, Brad and Moran, Jason and Ramirez-Campillo, Rodrigo and Behrens, Martin and Baumert, Philipp and Erskine, Robert M. and Hauser, Lukas and Chaabene, Helmi}, title = {Effect of Plyometric Jump Training on Skeletal Muscle Hypertrophy in Healthy Individuals: A Systematic Review With Multilevel Meta-Analysis}, series = {Frontiers in Physiology}, volume = {13}, journal = {Frontiers in Physiology}, edition = {888464}, publisher = {Frontiers}, address = {Lausanne, Schweiz}, issn = {1664-042X}, doi = {10.3389/fphys.2022.888464}, pages = {1 -- 17}, year = {2022}, abstract = {Objective: To examine the effect of plyometric jump training on skeletal muscle hypertrophy in healthy individuals. Methods: A systematic literature search was conducted in the databases PubMed, SPORTDiscus, Web of Science, and Cochrane Library up to September 2021. Results: Fifteen studies met the inclusion criteria. The main overall finding (44 effect sizes across 15 clusters median = 2, range = 1-15 effects per cluster) indicated that plyometric jump training had small to moderate effects [standardised mean difference (SMD) = 0.47 (95\% CIs = 0.23-0.71); p < 0.001] on skeletal muscle hypertrophy. Subgroup analyses for training experience revealed trivial to large effects in non-athletes [SMD = 0.55 (95\% CIs = 0.18-0.93); p = 0.007] and trivial to moderate effects in athletes [SMD = 0.33 (95\% CIs = 0.16-0.51); p = 0.001]. Regarding muscle groups, results showed moderate effects for the knee extensors [SMD = 0.72 (95\% CIs = 0.66-0.78), p < 0.001] and equivocal effects for the plantar flexors [SMD = 0.65 (95\% CIs = -0.25-1.55); p = 0.143]. As to the assessment methods of skeletal muscle hypertrophy, findings indicated trivial to small effects for prediction equations [SMD = 0.29 (95\% CIs = 0.16-0.42); p < 0.001] and moderate-to-large effects for ultrasound imaging [SMD = 0.74 (95\% CIs = 0.59-0.89); p < 0.001]. Meta-regression analysis indicated that the weekly session frequency moderates the effect of plyometric jump training on skeletal muscle hypertrophy, with a higher weekly session frequency inducing larger hypertrophic gains [β = 0.3233 (95\% CIs = 0.2041-0.4425); p < 0.001]. We found no clear evidence that age, sex, total training period, single session duration, or the number of jumps per week moderate the effect of plyometric jump training on skeletal muscle hypertrophy [β = -0.0133 to 0.0433 (95\% CIs = -0.0387 to 0.1215); p = 0.101-0.751]. Conclusion: Plyometric jump training can induce skeletal muscle hypertrophy, regardless of age and sex. There is evidence for relatively larger effects in non-athletes compared with athletes. Further, the weekly session frequency seems to moderate the effect of plyometric jump training on skeletal muscle hypertrophy, whereby more frequent weekly plyometric jump training sessions elicit larger hypertrophic adaptations.}, language = {en} } @article{KhudairMarcuzziNgetal.2022, author = {Khudair, Mohammed and Marcuzzi, Anna and Ng, Kwok and Tempest, Gavin Daniel and Bartoš, František and Peric, Ratko and Maier, Maximilian and Beccia, Flavia and Boccia, Stefania and Brandes, Mirko and Cardon, Greet and Carlin, Angela and Castagna, Carolina and Chaabene, Helmi and Chalkley, Anna and Ciaccioni, Simone and Cieślińska-Świder, Joanna and Čingienė, Vilma and Cortis, Cristina and Corvino, Chiara and de Geus, Eco J. C. and Di Baldassarre, Angela and Di Credico, Andrea and Drid, Patrik and Tarazaga, Rosa Ma Fern{\´a}ndez and Gall{\`e}, Francesca and S{\´a}nchez, Esther Garcia and Gebremariam, Mekdes and Ghinassi, Barbara and Goudas, Marios and Hayes, Grainne and Honorio, Samuel and Izzicupo, Pascal and Jahre, Henriette and Jelsma, Judith and Juric, Petra and Kolovelonis, Athanasios and Kongsvold, Atle and Kouidi, Evangelia and Mansergh, Fiona and Masanovic, Bojan and Mekonnen, Teferi and Mork, Paul Jarle and Murphy, Marie and O'Hara, Kelly and Torun, Ayse Ozbil and Palumbo, Federico and Popovic, Stevo and Prieske, Olaf and Puharic, Zrinka and Ribeiro, Jos{\´e} Carlos and Rumbold, Penny Louise Sheena and Sandu, Petru and Soric, Maroje and Stavnsbo, Mette and Syrmpas, Ioannis and van der Ploeg, Hidde P. and Van Hoye, Aur{\´e}lie and Vilela, Sofia and Woods, Catherine and Wunsch, Kathrin and Caprinica, Laura and MacDonncha, Ciaran and Ling, Fiona Chun Man}, title = {DE-PASS Best Evidence Statement (BESt): modifiable determinants of physical activity and sedentary behaviour in children and adolescents aged 5-19 years-a protocol for systematic review and meta-analysis}, series = {BMJ open}, volume = {12}, journal = {BMJ open}, number = {9}, publisher = {BMJ Publishing Group}, address = {London}, organization = {DE-PASS}, issn = {2044-6055}, doi = {10.1136/bmjopen-2021-059202}, pages = {8}, year = {2022}, abstract = {Introduction Physical activity among children and adolescents remains insufficient, despite the substantial efforts made by researchers and policymakers. Identifying and furthering our understanding of potential modifiable determinants of physical activity behaviour (PAB) and sedentary behaviour (SB) is crucial for the development of interventions that promote a shift from SB to PAB. The current protocol details the process through which a series of systematic literature reviews and meta-analyses (MAs) will be conducted to produce a best-evidence statement (BESt) and inform policymakers. The overall aim is to identify modifiable determinants that are associated with changes in PAB and SB in children and adolescents (aged 5-19 years) and to quantify their effect on, or association with, PAB/SB. Methods and analysis A search will be performed in MEDLINE, SportDiscus, Web of Science, PsychINFO and Cochrane Central Register of Controlled Trials. Randomised controlled trials (RCTs) and controlled trials (CTs) that investigate the effect of interventions on PAB/SB and longitudinal studies that investigate the associations between modifiable determinants and PAB/SB at multiple time points will be sought. Risk of bias assessments will be performed using adapted versions of Cochrane's RoB V.2.0 and ROBINS-I tools for RCTs and CTs, respectively, and an adapted version of the National Institute of Health's tool for longitudinal studies. Data will be synthesised narratively and, where possible, MAs will be performed using frequentist and Bayesian statistics. Modifiable determinants will be discussed considering the settings in which they were investigated and the PAB/SB measurement methods used. Ethics and dissemination No ethical approval is needed as no primary data will be collected. The findings will be disseminated in peer-reviewed publications and academic conferences where possible. The BESt will also be shared with policy makers within the DE-PASS consortium in the first instance. Systematic review registration CRD42021282874.}, language = {en} }