@article{BrechunZhenJaikaranetal.2019, author = {Brechun, Katherine E. and Zhen, Danlin and Jaikaran, Anna and Borisenko, Vitali and Kumauchi, Masato and Hoff, Wouter D. and Arndt, Katja Maren and Woolley, Andrew G}, title = {Detection of Incorporation of p-Coumaric Acid into Photoactive Yellow Protein Variants in Vivo}, series = {Biochemistry}, volume = {58}, journal = {Biochemistry}, number = {23}, publisher = {American Chemical Society}, address = {Washington}, issn = {0006-2960}, doi = {10.1021/acs.biochem.9b00279}, pages = {2682 -- 2694}, year = {2019}, abstract = {We report the design and characterization of photoactive yellow protein (PYP)-blue fluorescent protein (mTagBFP) fusion constructs that permit the direct assay of reconstitution and function of the PYP domain. These constructs allow for in vivo testing of co-expression systems for enzymatic production of the p-coumaric acid-based PYP chromophore, via the action of tyrosine ammonia lyase and p-coumaroyl-CoA ligase (pCL or 4CL). We find that different 4CL enzymes can function to reconstitute PYP, including 4CL from Arabidopsis thaliana that can produce similar to 100\% holo-PYP protein under optimal conditions. mTagBFP fusion constructs additionally enable rapid analysis of effects of mutations on PYP photocycles. We use this mTagBFP fusion strategy to demonstrate in vivo reconstitution of several PYP-based optogenetic tools in Escherichia coli via a biosynthesized chromophore, an important step for the use of these optogenetic tools in vivo in diverse hosts.}, language = {en} } @article{BrechunArndtWoolley2017, author = {Brechun, Katherine E. and Arndt, Katja Maren and Woolley, G. Andrew}, title = {Strategies for the photo-control of endogenous protein activity}, series = {Current opinion in structural biology : review of all advances ; evaluation of key references ; comprehensive listing of papers}, volume = {45}, journal = {Current opinion in structural biology : review of all advances ; evaluation of key references ; comprehensive listing of papers}, publisher = {Elsevier}, address = {London}, issn = {0959-440X}, doi = {10.1016/j.sbi.2016.11.014}, pages = {53 -- 58}, year = {2017}, language = {en} } @misc{BrechunWoolleyArndt2017, author = {Brechun, Katherine E. and Woolley, Andrew and Arndt, Katja Maren}, title = {A Bacterial Bandpass Assay for Protein-Protein Interactions}, series = {Protein science : a publication of the Protein Society}, volume = {26}, journal = {Protein science : a publication of the Protein Society}, publisher = {Wiley}, address = {Hoboken}, issn = {0961-8368}, pages = {198 -- 198}, year = {2017}, language = {en} } @article{MazumderBrechunKimetal.2015, author = {Mazumder, Mostafizur and Brechun, Katherine E. and Kim, Yongjoo B. and Hoffmann, Stefan A. and Chen, Yih Yang and Keiski, Carrie-Lynn and Arndt, Katja Maren and McMillen, David R. and Woolley, G. Andrew}, title = {An Escherichia coli system for evolving improved light-controlled DNA-binding proteins}, series = {Protein engineering design \& selection}, volume = {28}, journal = {Protein engineering design \& selection}, number = {9}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {1741-0126}, doi = {10.1093/protein/gzv033}, pages = {293 -- 302}, year = {2015}, abstract = {Light-switchable proteins offer numerous opportunities as tools for manipulating biological systems with exceptional degrees of spatiotemporal control. Most designed light-switchable proteins currently in use have not been optimised using the randomisation and selection/screening approaches that are widely used in other areas of protein engineering. Here we report an approach for screening light-switchable DNA-binding proteins that relies on light-dependent repression of the transcription of a fluorescent reporter. We demonstrate that the method can be used to recover a known light-switchable DNA-binding protein from a random library.}, language = {en} }