@article{NazeWangChuetal.2014, author = {Naze, Yael and Wang, Q. Daniel and Chu, You-Hua and Gruendl, Robert and Oskinova, Lida}, title = {A deep chandra observation of the giant HII region N11. I. x-ray sorces in the field}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Supplement series}, volume = {213}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Supplement series}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0067-0049}, doi = {10.1088/0067-0049/213/2/23}, pages = {20}, year = {2014}, abstract = {A very sensitive X-ray investigation of the giant HII region N11 in the Large Megallanic Cloud was performed using the Chandra X-ray Observatory. The 300 ks observation reveals X-ray sources with luminosities down to 10(32) erg s(-1), increasing the number of known point sources in the field by more than a factor of five. Among these detections are 13 massive stars (3 compact groups of massive stars, 9 O stars, and one early B star) with log(L-X/L-BOL) similar to -6.5 to -7, which may suggest that they are highly magnetic or colliding-wind systems. On the other hand, the stacked signal for regions corresponding to undetected O stars yields log(L-X/L-BOL) similar to -7.3, i.e., an emission level comparable to similar Galactic stars despite the lower metallicity. Other point sources coincide with 11 foreground stars, 6 late-B/A stars in N11, and many background objects. This observation also uncovers the extent and detailed spatial properties of the soft, diffuse emission regions, but the presence of some hotter plasma in their spectra suggests contamination by the unresolved stellar population.}, language = {en} } @article{OskinovaNazeTodtetal.2014, author = {Oskinova, Lida and Naze, Yael and Todt, Helge Tobias and Huenemoerder, David P. and Ignace, Richard and Hubrig, Swetlana and Hamann, Wolf-Rainer}, title = {Discovery of X-ray pulsations from a massive star}, series = {Nature Communications}, volume = {5}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/ncomms5024}, pages = {9}, year = {2014}, abstract = {X-ray emission from stars much more massive than the Sun was discovered only 35 years ago. Such stars drive fast stellar winds where shocks can develop, and it is commonly assumed that the X-rays emerge from the shock-heated plasma. Many massive stars additionally pulsate. However, hitherto it was neither theoretically predicted nor observed that these pulsations would affect their X-ray emission. All X-ray pulsars known so far are associated with degenerate objects, either neutron stars or white dwarfs. Here we report the discovery of pulsating X-rays from a non-degenerate object, the massive B-type star xi(1) CMa. This star is a variable of beta Cep-type and has a strong magnetic field. Our observations with the X-ray Multi-Mirror (XMM-Newton) telescope reveal X-ray pulsations with the same period as the fundamental stellar oscillations. This discovery challenges our understanding of stellar winds from massive stars, their X-ray emission and their magnetism.}, language = {en} }