@article{TirokGaedke2007, author = {Tirok, Katrin and Gaedke, Ursula}, title = {The effect of irradiance, vertical mixing and temperature on spring phytoplankton dynamics under climate change : long-term observations and model analysis}, doi = {10.1007/s00442-006-0547-4}, year = {2007}, abstract = {Spring algal development in deep temperate lakes is thought to be strongly influenced by surface irradiance, vertical mixing and temperature, all of which are expected to be altered by climate change. Based on long-term data from Lake Constance, we investigated the individual and combined effects of these variables on algal dynamics using descriptive statistics, multiple regression models and a processoriented dynamic simulation model. The latter considered edible and less-edible algae and was forced by observed or anticipated irradiance, temperature and vertical mixing intensity. Unexpectedly, irradiance often dominated algal net growth rather than vertical mixing for the following reason: algal dynamics depended on algal net losses from the euphotic layer to larger depth due to vertical mixing. These losses strongly depended on the vertical algal gradient which, in turn, was determined by the mixing intensity during the previous days, thereby introducing a memory effect. This observation implied that during intense mixing that had already reduced the vertical algal gradient, net losses due to mixing were small. Consequently, even in deep Lake Constance, the reduction in primary production due to low light was often more influential than the net losses due to mixing. In the regression model, the dynamics of small, fast-growing algae was best explained by vertical mixing intensity and global irradiance, whereas those of larger algae were best explained by their biomass 1 week earlier. The simulation model additionally revealed that even in late winter grazing may represent an important loss factor during calm periods when losses due to mixing are small. The importance of losses by mixing and grazing changed rapidly as it depended on the variable mixing intensity. Higher temperature, lower global irradiance and enhanced mixing generated lower algal biomass and primary production in the dynamic simulation model. This suggests that potential consequences of climate change may partly counteract each other.}, language = {en} } @article{TirokGaedke2007, author = {Tirok, Katrin and Gaedke, Ursula}, title = {Regulation of planktonic ciliate dynamics and functional composition during spring in Lake Constance}, doi = {10.3354/Ame01127}, year = {2007}, abstract = {Protozoans are among the most important grazers of phytoplankton and remineralizers of nutrients in marine and freshwater ecosystems, but less is known about the regulation of their population dynamics. We analyzed a 12 yr data set of ciliate biomass and species composition in large, deep Lake Constance to understand the factors influencing ciliate spring development. The start of ciliate net growth in spring was closely linked to that of edible algae, chlorophyll a and the vertical mixing intensity, but independent of water temperature. During ciliate spring growth, the relative contribution of ciliated interception feeders was positively related to that of cryptomonads, whereas the relative contribution of filter feeders correlated positively with that of non-cryptomonads. The duration of ciliate dominance in spring was largely controlled by the highly variable onset of the phytoplankton bloom, as the termination of the ciliate bloom was less variable. During years with an extended spring bloom of algae and ciliates, internally forced species shifts were observed in both communities. Interception feeders alternated with filter feeders in their relative importance as did cryptomonads and non-cryptomonads. Extended spring blooms were observed when vertical mixing intensity was low at low temperatures during early spring, which will become less likely under the anticipated climate change scenarios. The termination of the ciliate spring bloom occurred prior to a reduction in food concentration and mostly also prior to the mass development of daphnids alone, but coincided with increased grazing by various predators together, such as rotifers, copepods and daphnids in late May/early June.}, language = {en} }