@article{AnklamBehlerDingermannetal.2013, author = {Anklam, Elke and Behler, J{\"o}rg and Dingermann, Theodor and Elsinghorst, Paul and Fischer, Jochen and Esselen, Melanie and Foerster, Christian and Fr{\"o}hlich, Daniel and Goedel, Werner Andreas and Gregory, Peter and Grimme, Stefan and Hackenberger, Christian and Hansmann, Max and Heppekausen, Johannes and Hasenstab-Riedel, Sebastian and Kirchhoff, Erhard and Kratz, Karl-Ludwig and Krausz, Ferenc and Linker, Torsten and List, Benjamin and Ray, Kallol and Salzer, Reiner and Schubert, Ulrich and Schueth, Ferdi and Schwarz, Helmut and Schwietzke, Uta and Strey, Reinhard and Stumpf, Thorsten and Vaagt, Franziska and Volodkin, Dmitry and Wilke, Guenther and Zass, Engelbert and Zemb, Thomas}, title = {Awards}, series = {Nachrichten aus der Chemie : Zeitschrift der Gesellschaft Deutscher Chemiker}, volume = {61}, journal = {Nachrichten aus der Chemie : Zeitschrift der Gesellschaft Deutscher Chemiker}, number = {11}, publisher = {Ges. Dt. Chemiker}, address = {Frankfurt, Main}, issn = {1439-9598}, doi = {10.1002/nadc.201390372}, pages = {1145 -- 1148}, year = {2013}, language = {de} } @article{BauchBoettcherBornscheueretal.2016, author = {Bauch, Marcel and B{\"o}ttcher, Dominique and Bornscheuer, Uwe T. and Linker, Torsten}, title = {Enzymatic Cleavage of Aryl Acetates}, series = {ChemCatChem : heterogeneous \& homogeneous \& bio- \& nano-catalysis ; a journal of ChemPubSoc Europe}, volume = {8}, journal = {ChemCatChem : heterogeneous \& homogeneous \& bio- \& nano-catalysis ; a journal of ChemPubSoc Europe}, publisher = {Wiley-VCH}, address = {Weinheim}, organization = {HESS Collaboration}, issn = {1867-3880}, doi = {10.1002/cctc.201600678}, pages = {2853 -- 2857}, year = {2016}, abstract = {Seven enzymes have been screened for the cleavage of aryl acetates. Phenyl and naphthyl acetates react with lipases and esterases, whereas the sterically demanding anthracene acetate gave a conversion only with porcine liver esterase and esterase 2 from Bacillus subtilis (BS2). These two enzymes have been employed on a preparative (0.5 mmol) scale and afforded cleavage products in 91 and 94\% yields, even for anthracene acetate. Thus, this method is superior to chemical cleavage with catalytic amounts of sodium methoxide (Zemplen conditions), which gave only low conversions. Finally, regioselectivity has been achieved with an anthracene bisacetate, in which an ethyl group controls the cleavage of the first acetate. This indicates that steric interactions play a crucial role in the enzymatic cleavage of aryl acetates, which might be interesting for future applications or the development of enzyme inhibitors.}, language = {en} } @article{BauchFudickarLinker2021, author = {Bauch, Marcel and Fudickar, Werner and Linker, Torsten}, title = {Stereoselective [4+2] Cycloaddition of Singlet Oxygen to Naphthalenes Controlled by Carbohydrates}, series = {Molecules : a journal of synthetic chemistry and natural product chemistry}, volume = {16}, journal = {Molecules : a journal of synthetic chemistry and natural product chemistry}, number = {4}, publisher = {MDPI}, address = {Basel}, issn = {1420-3049}, doi = {10.3390/molecules26040804}, pages = {17}, year = {2021}, abstract = {Stereoselective reactions of singlet oxygen are of current interest. Since enantioselective photooxygenations have not been realized efficiently, auxiliary control is an attractive alternative. However, the obtained peroxides are often too labile for isolation or further transformations into enantiomerically pure products. Herein, we describe the oxidation of naphthalenes by singlet oxygen, where the face selectivity is controlled by carbohydrates for the first time. The synthesis of the precursors is easily achieved starting from naphthoquinone and a protected glucose derivative in only two steps. Photooxygenations proceed smoothly at low temperature, and we detected the corresponding endoperoxides as sole products by NMR. They are labile and can thermally react back to the parent naphthalenes and singlet oxygen. However, we could isolate and characterize two enantiomerically pure peroxides, which are sufficiently stable at room temperature. An interesting influence of substituents on the stereoselectivities of the photooxygenations has been found, ranging from 51:49 to up to 91:9 dr (diastereomeric ratio). We explain this by a hindered rotation of the carbohydrate substituents, substantiated by a combination of NOESY measurements and theoretical calculations. Finally, we could transfer the chiral information from a pure endoperoxide to an epoxide, which was isolated after cleavage of the sugar chiral auxiliary in enantiomerically pure form.}, language = {en} } @misc{BauchFudickarLinker2021, author = {Bauch, Marcel and Fudickar, Werner and Linker, Torsten}, title = {Stereoselective [4+2] Cycloaddition of Singlet Oxygen to Naphthalenes Controlled by Carbohydrates}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1116}, issn = {1866-8372}, doi = {10.25932/publishup-49336}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-493361}, pages = {19}, year = {2021}, abstract = {Stereoselective reactions of singlet oxygen are of current interest. Since enantioselective photooxygenations have not been realized efficiently, auxiliary control is an attractive alternative. However, the obtained peroxides are often too labile for isolation or further transformations into enantiomerically pure products. Herein, we describe the oxidation of naphthalenes by singlet oxygen, where the face selectivity is controlled by carbohydrates for the first time. The synthesis of the precursors is easily achieved starting from naphthoquinone and a protected glucose derivative in only two steps. Photooxygenations proceed smoothly at low temperature, and we detected the corresponding endoperoxides as sole products by NMR. They are labile and can thermally react back to the parent naphthalenes and singlet oxygen. However, we could isolate and characterize two enantiomerically pure peroxides, which are sufficiently stable at room temperature. An interesting influence of substituents on the stereoselectivities of the photooxygenations has been found, ranging from 51:49 to up to 91:9 dr (diastereomeric ratio). We explain this by a hindered rotation of the carbohydrate substituents, substantiated by a combination of NOESY measurements and theoretical calculations. Finally, we could transfer the chiral information from a pure endoperoxide to an epoxide, which was isolated after cleavage of the sugar chiral auxiliary in enantiomerically pure form.}, language = {en} } @article{BauchKlaperLinker2017, author = {Bauch, Marcel and Klaper, Matthias and Linker, Torsten}, title = {Intermediates in the cleavage of endoperoxides}, series = {Journal of physical organic chemistry}, volume = {30}, journal = {Journal of physical organic chemistry}, publisher = {Wiley}, address = {Hoboken}, issn = {0894-3230}, doi = {10.1002/poc.3607}, pages = {6}, year = {2017}, abstract = {The decomposition of anthracene endoperoxides has been investigated under various conditions. Thermolyses proceed via radical intermediates and afford anthracenes and rearrangement products, depending on the substitution pattern. Interestingly, not only the O-O but also the C-O bond can be cleaved homolytically. Under basic conditions fragmentations take place, affording anthraquinone, and reactive oxygen species. This mechanism explains the often observed decomposition of endoperoxides during work-up. Finally, an acid-catalyzed cleavage has been observed under release of hydrogen peroxide. The results should be interesting for the mechanistic understanding of peroxide decomposition and the endoperoxides might serve as mild sources of reactive oxygen species for future applications. Copyright (C) 2016 John Wiley \& Sons, Ltd.}, language = {en} } @article{BauchKrtitschkaLinker2017, author = {Bauch, Marcel and Krtitschka, Angela and Linker, Torsten}, title = {Photooxygenation of oxygen-substituted naphthalenes}, series = {Journal of physical organic chemistry}, volume = {30}, journal = {Journal of physical organic chemistry}, publisher = {Wiley}, address = {Hoboken}, issn = {0894-3230}, doi = {10.1002/poc.3734}, pages = {6803 -- 6813}, year = {2017}, abstract = {The reaction of oxygen-substituted naphthalenes with singlet oxygen (O-1(2)) has been investigated, and labile endoperoxides have been isolated and characterized at -78 degrees C for the first time. Low-temperature kinetics by UV spectroscopy revealed that alkoxy and silyloxy substituents remarkably increase the rate of photooxygenations compared to 1,4-dimethylnaphthalene, whereas acyloxy-substituted acenes are inert towards O-1(2). The reactivities nicely correlate with HOMO energies and free activation energies, which we determined by density functional theory calculations. The lability of the isolated endoperoxides is due to their very fast back reaction to the corresponding naphthalenes even at -20 degrees C under release of O-1(2), making them to superior sources of this reactive species under very mild conditions. Finally, a carbohydrate-substituted naphthalene has been synthesized, which reacts reversibly with O-1(2) and might be applied for enantioselective oxidations in future work.}, language = {en} } @article{BramborgLinker2010, author = {Bramborg, Andrea and Linker, Torsten}, title = {Selective synthesis of 1,4-dialkylbenzenes from terephthalic acid}, issn = {1615-4150}, doi = {10.1002/adsc.201000322}, year = {2010}, abstract = {Terephthalic acid reacts with alkyl halides under Birch conditions to substituted 1,4-cyclohexadienes in high yields and good stereoselectivities. Electrophiles containing ester or nitrile groups undergo a surprising fragmentation under the reaction conditions. Subsequent treatment with chlorosulfonic acid proceeds by an interesting tandem decarbonylation/decarboxylation, affording 1,4-dialkylbenzenes in excellent regioselectivity. Thus our new method is superior to classical Friedel-Crafts alkylations.}, language = {en} } @article{BramborgLinker2012, author = {Bramborg, Andrea and Linker, Torsten}, title = {Regioselective synthesis of alkylarenes by two-step ipso-substitution of aromatic dicarboxylic acids}, series = {European journal of organic chemistry}, journal = {European journal of organic chemistry}, number = {28}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-193X}, doi = {10.1002/ejoc.201200823}, pages = {5552 -- 5563}, year = {2012}, abstract = {A strategy for the regioselective alkylation of arenes was developed, starting from commercially available and inexpensive terephthalic acid or naphthalene-1,4-dicarboxylic acid. The method entails a formal ipso-substitution of the carboxylate groups by a sequence of reductive alkylation under Birch conditions and subsequent acid-mediated rearomatization with loss of carbon monoxide and carbon dioxide. More than 20 different arenes with various side-chains were synthesized. With naphthalene-1,4-dicarboxylic acid as starting material, we were able to control the degree of alkylation by choosing the appropriate electrophile in the Birch reduction. Thus, bisalkylated naphthalenes and naphthoic acids became available chemoselectively. All reactions afforded a single regioisomer exclusively in high yields. Overall, aromatic dicarboxylic acids are suitable substrates for a two-step ipso-substitution that allows the selective synthesis of alkylated benzenes and naphthalenes.}, language = {en} } @article{ElamparuthiLinker2009, author = {Elamparuthi, Elangovan and Linker, Torsten}, title = {Carbohydrate-2-deoxy-2-phosphonates : simple synthesis and Horner-Emmons reaction}, issn = {1433-7851}, doi = {10.1002/anie.200804725}, year = {2009}, abstract = {Phosphorus meets carbohydrates: Dimethyl phosphite reacts with ceric(IV) ammonium nitrate (CAN) to give phosphonyl radicals that add to glycals 1. The derivatives 2 were isolated in high yields and during a subsequent Horner-Emmons reaction underwent an interesting elimination to give 3,6-dihydro-2H-pyrans 3. The short sequence with simple precursors is applicable to the transformation of hexoses, pentoses, and disaccharides. Bn=benzyl.}, language = {en} } @article{ElamparuthiLinkerKellingetal.2009, author = {Elamparuthi, Elangovan and Linker, Torsten and Kelling, Alexandra and Schilde, Uwe}, title = {Crystal structure of methyl 3,4-di-O-benzyl-2-deoxy-2-C-nitromethyl-alpha-D-arabinopyranoside, C21H25NO6}, issn = {1433-7266}, doi = {10.1524/ncrs.2009.0027}, year = {2009}, language = {en} }