@article{GadelhaCoelhoXavieretal.2018, author = {Gad{\^e}lha, Andr{\´e} N. and Coelho, Victor Hugo R. and Xavier, Alexandre C. and Barbosa, Lu{\´i}s Romero and Melo, Davi C. D. and Xuan, Yunqing and Huffman, George J. and Petersen, Walt A. and Almeida, Cristiano das Neves}, title = {Grid box-level evaluation of IMERG over Brazil at various space and time scales}, series = {Atmospheric Research}, volume = {218}, journal = {Atmospheric Research}, publisher = {Elsevier}, address = {New York}, issn = {0169-8095}, doi = {10.1016/j.atmosres.2018.12.001}, pages = {231 -- 244}, year = {2018}, abstract = {Rainfall data from the Global Precipitation Measurement (GPM) mission provide a new source of information with high spatiotemporal resolution that overcomes the limitations of ground-based rainfall information worldwide. This study evaluates the performance of the Integrated multi-satellitE Retrievals for GPM (IMERG) Final Run product over Brazil by means of multi-temporal and -spatial analyses. The assessment of the IMERG Final Run product is based on six statistics obtained for the period between January-December 2016 (daily, monthly, and annual basis). The analysis consisted of comparing the satellite-based estimates against a ground-based gridded rainfall product created using daily records from 4911 rain gauges distributed throughout Brazil. Overall, the results show that the IMERG product can effectively capture the spatial patterns of rainfall across Brazil. However, the IMERG product presents a slight tendency in overestimating the ground-based rainfall at all timescales. Furthermore, the performance of the satellite product varies throughout the region. The higher errors and biases are found in the North and Central-West regions, but the low density of rain gauges in those regions can be a source of large deviations between IMERG estimates and observations. A large underestimation of the IMERG data is evident along the coastal zone of the North-east region, probably due to the inability of the passive microwave and infrared sensors to detect warm-rain processes over land. This study shows that the IMERG product can be a good source of rainfall data to complement the ground precipitation measurements in most of Brazil, although some uncertainties are found and need to be further studied}, language = {en} }