@article{SteinhoefelBreuervonBlanckenburgetal.2017, author = {Steinh{\"o}fel, Grit and Breuer, J{\"o}rn and von Blanckenburg, Friedhelm and Horn, Ingo and Sommer, Michael}, title = {The dynamics of Si cycling during weathering in two small catchments in the Black Forest (Germany) traced by Si isotopes}, series = {Chemical geology : official journal of the European Association for Geochemistry}, volume = {466}, journal = {Chemical geology : official journal of the European Association for Geochemistry}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0009-2541}, doi = {10.1016/j.chemgeo.2017.06.026}, pages = {389 -- 402}, year = {2017}, abstract = {Silicon stable isotopes have emerged as a powerful proxy to investigate weathering because Si uptake from solution by secondary minerals or by the vegetation causes significant shifts in the isotope composition. In this study, we determined the Si isotope compositions of the principle Si pools within two small catchments located on sandstone and paragneiss, respectively, in the temperate Black Forest (Germany). At both settings, clay formation is dominated by mineral transformation preserving largely the signature of parental minerals with delta Si-30 values of around -0.7\%. Bulk soils rich in primary minerals are similar to bulk parental material with delta Si-30 values close to -0.4\%. Topsoils are partly different because organic matter degradation has promoted intense weathering leading to delta Si-30 values as low as -1.0\%. Water samples expose highly dynamic weathering processes in the soil zone: 1) after spring snowmelt, increased release of DOC and high water fluxes trigger clay mineral dissolution which leads to delta Si-30 values down to -0.7\% and 2) in course of the summer, Si uptake by the vegetation and secondary mineral formation drives dissolved Si to typical positive delta Si-30 values up to 1.1\%. Groundwater with delta Si-30 values of around 0.4\% records steady processes in bedrock reflecting plagioclase weathering together with kaolinite precipitation. An isotope mass balance approach reveals incongruent weathering conditions where denudation of Si is largely driven by physical erosion. Erosion of phytoliths contributes 3 to 21\% to the total Si export flux, which is in the same order as the dissolved Si flux. These results elucidate the Si dynamics during weathering on catchments underlain of sedimentary origin, prevailing on the Earth surface and provide therefore valuable information to interpret the isotope signature of large river systems.}, language = {en} } @article{SteinhoefelBreuervonBlanckenburgetal.2011, author = {Steinhoefel, Grit and Breuer, J{\"o}rn and von Blanckenburg, Friedhelm and Horn, Ingo and Kaczorek, Danuta and Sommer, Michael}, title = {Micrometer silicon isotope diagnostics of soils by UV femtosecond laser ablation}, series = {Chemical geology : official journal of the European Association for Geochemistry}, volume = {286}, journal = {Chemical geology : official journal of the European Association for Geochemistry}, number = {3-4}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0009-2541}, doi = {10.1016/j.chemgeo.2011.05.013}, pages = {280 -- 289}, year = {2011}, abstract = {This study presents the first Si isotope data of the principle Si pools in soils determined by a UV femtosecond laser ablation system coupled to a multicollector inductively coupled plasma mass spectrometer (MC-ICP-MS). This method reveals accurate and precise Si isotope data on bulk materials, and at high spatial resolution, on the mineral scale. The following Si pools have been investigated: a) the Si source to soils on all major silicate minerals on thin sections from bedrock fragments in the soil profiles; b) bulk soils (particle size <2 mm) after fusion to glass beads with an iridium-strip heater or pressed into powder pellets: c) separated clay fractions as pressed powder pellets and e) separated phytoliths as pressed powder pellets. Multiple analyses of three rock standards, BHVO-2, AGV-1 and RGM-1 as fused glass beads and as pressed powder pellets, reveal delta(30)Si values within the expected range of igneous rocks. The MPI-DING reference glass KL2-G exhibits the same Si isotope composition after remelting by an iridium-strip heater showing that this technique does not alter the isotope composition of the glass. We used this approach to investigated two immature Cambisols developed on sandstone and paragneiss in the Black Forest (Germany), respectively. Bulk soils show a largely uniform Si isotope signature for different horizons and locations, which is close to those of primary quartz and feldspar with delta(30)Si values around -0.4 parts per thousand. Soil clay formation is associated with limited Si mobility, which preserves initial Si isotope signatures of parental minerals. An exception is the organic horizon of the paragneiss catchment where intense weathering leads to a high mobility of Si and significant negative isotope signatures as low as to -1.00 parts per thousand in bulk soils. Biogenic opal in the form of phytoliths, exhibits negative Si isotope signatures of about -0.4 parts per thousand. These results demonstrate that UV femtosecond laser ablation MC-ICP-MS provides a tool to characterize the Si isotope signature of the principle Si pools left behind after weathering and Si transport have altered soils. These results can now serve as a fingerprint of the residual solids that can be used to explain the isotope composition of dissolved Si in soil solutions and river water, which is mostly enriched in the heavy isotopes.}, language = {en} } @article{SommerJochheimHoehnetal.2013, author = {Sommer, Michael and Jochheim, H. and H{\"o}hn, Axel and Breuer, J{\"o}rn and Zagorski, Z. and Busse, J. and Barkusky, Dietmar and Meier, K. and Puppe, D. and Wanner, Manfred and Kaczorek, Danuta}, title = {Si cycling in a forest biogeosystem - the importance of transient state biogenic Si pools}, series = {Biogeosciences}, volume = {10}, journal = {Biogeosciences}, number = {7}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1726-4170}, doi = {10.5194/bg-10-4991-2013}, pages = {4991 -- 5007}, year = {2013}, abstract = {The relevance of biological Si cycling for dissolved silica (DSi) export from terrestrial biogeosystems is still in debate. Even in systems showing a high content of weatherable minerals, like Cambisols on volcanic tuff, biogenic Si (BSi) might contribute > 50\% to DSi (Gerard et al., 2008). However, the number of biogeosystem studies is rather limited for generalized conclusions. To cover one end of controlling factors on DSi, i.e., weatherable minerals content, we studied a forested site with absolute quartz dominance (> 95 \%). Here we hypothesise minimal effects of chemical weathering of silicates on DSi. During a four year observation period (05/2007-04/2011), we quantified (i) internal and external Si fluxes of a temperate-humid biogeosystem (beech, 120 yr) by BIOME-BGC (version ZALF), (ii) related Si budgets, and (iii) Si pools in soil and beech, chemically as well as by SEM-EDX. For the first time two compartments of biogenic Si in soils were analysed, i.e., phytogenic and zoogenic Si pool (testate amoebae). We quantified an average Si plant uptake of 35 kg Si ha(-1) yr(-1) - most of which is recycled to the soil by litterfall - and calculated an annual biosilicification from idiosomic testate amoebae of 17 kg Si ha(-1). The comparatively high DSi concentrations (6 mg L-1) and DSi exports (12 kg Si ha(-1) yr(-1)) could not be explained by chemical weathering of feldspars or quartz dissolution. Instead, dissolution of a relictic, phytogenic Si pool seems to be the main process for the DSi observed. We identified canopy closure accompanied by a disappearance of grasses as well as the selective extraction of pine trees 30 yr ago as the most probable control for the phenomena observed. From our results we concluded the biogeosystem to be in a transient state in terms of Si cycling.}, language = {en} }