@article{BartholdTurnerElsenbeeretal.2017, author = {Barthold, Frauke Katrin and Turner, Benjamin L. and Elsenbeer, Helmut and Zimmermann, Alexander}, title = {A hydrochemical approach to quantify the role of return flow in a surface flow-dominated catchment}, series = {Hydrological processes}, volume = {31}, journal = {Hydrological processes}, number = {5}, publisher = {Wiley}, address = {Hoboken}, issn = {0885-6087}, doi = {10.1002/hyp.11083}, pages = {1018 -- 1033}, year = {2017}, abstract = {Stormflow generation in headwater catchments dominated by subsurface flow has been studied extensively, yet catchments dominated by surface flow have received less attention. We addressed this by testing whether stormflow chemistry is controlled by either (a) the event-water signature of overland flow, or (b) the pre-event water signature of return flow. We used a high-resolution hydrochemical data set of stormflow and end-members of multiple storms in an end-member mixing analysis to determine the number of end-members needed to explain stormflow, characterize and identify potential end-members, calculate their contributions to stormflow, and develop a conceptual model of stormflow. The arrangement and relative positioning of end-members in stormflow mixing space suggest that saturation excess overland flow (26-48\%) and return flow from two different subsurface storage pools (17-53\%) are both similarly important for stormflow. These results suggest that pipes and fractures are important flow paths to rapidly release stored water and highlight the value of within-event resolution hydrochemical data to assess the full range and dynamics of flow paths.}, language = {en} } @article{MeeseBookhagenOlenetal.2018, author = {Meese, Bernd and Bookhagen, Bodo and Olen, Stephanie M. and Barthold, Frauke Katrin and Sachse, Dirk}, title = {The effect of Indian Summer Monsoon rainfall on surface water delta D values in the central Himalaya}, series = {Hydrological processes}, volume = {32}, journal = {Hydrological processes}, number = {24}, publisher = {Wiley}, address = {Hoboken}, issn = {0885-6087}, doi = {10.1002/hyp.13281}, pages = {3662 -- 3674}, year = {2018}, abstract = {Stable isotope proxy records, such as speleothems, plant-wax biomarker records, and ice cores, are suitable archives for the reconstruction of regional palaeohydrologic conditions. But the interpretation of these records in the tropics, especially in the Indian Summer Monsoon (ISM) domain, is difficult due to differing moisture and water sources: precipitation from the ISM and Winter Westerlies, as well as snow- and glacial meltwater. In this study, we use interannual differences in ISM strength (2011-2012) to understand the stable isotopic composition of surface water in the Arun River catchment in eastern Nepal. We sampled main stem and tributary water (n = 204) for stable hydrogen and oxygen isotope analysis in the postmonsoon phase of two subsequent years with significantly distinct ISM intensities. In addition to the 2011/2012 sampling campaigns, we collected a 12-month time series of main stem waters (2012/2013, n = 105) in order to better quantify seasonal effects on the variability of surface water delta O-18/delta D. Furthermore, remotely sensed satellite data of rainfall, snow cover, glacial coverage, and evapotranspiration was evaluated. The comparison of datasets from both years revealed that surface waters of the main stem Arun and its tributaries were D-enriched by similar to 15 parts per thousand when ISM rainfall decreased by 20\%. This strong response emphasizes the importance of the ISM for surface water run-off in the central Himalaya. However, further spatio-temporal analysis of remote sensing data in combination with stream water d-excess revealed that most high-altitude tributaries and the Tibetan part of the Arun receive high portions of glacial melt water and likely Winter Westerly Disturbances precipitation. We make the following two implications: First, palaeohydrologic archives found in high-altitude tributaries and on the southern Tibetan Plateau record a mixture of past precipitation delta D values and variable amounts of additional water sources. Second, surface water isotope ratios of lower elevated tributaries strongly reflect the isotopic composition of ISM rainfall implying a suitable region for the analysis of potential delta D value proxy records.}, language = {en} } @article{BartholdWoods2015, author = {Barthold, Frauke Katrin and Woods, Ross A.}, title = {Stormflow generation: A meta-analysis of field evidence from small, forested catchments}, series = {Water resources research}, volume = {51}, journal = {Water resources research}, number = {5}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0043-1397}, doi = {10.1002/2014WR016221}, pages = {3730 -- 3753}, year = {2015}, abstract = {Combinations of runoff characteristics are commonly used to represent distinct conceptual models of stormflow generation. In this study, three runoff characteristics: hydrograph response, time source of runoff water, and flow path are used to classify catchments. Published data from the scientific literature are used to provide evidence from small, forested catchments. Each catchment was assigned to one of the eight conceptual models, depending on the combination of quick/slow response, old/new water, and overland/subsurface flow. A standard procedure was developed to objectively diagnose the predominant conceptual model of stormflow generation for each catchment and assess its temporal and spatial support. The literature survey yielded 42 catchments, of which 30 catchments provide a complete set of qualitative runoff characteristics resulting in one of the eight conceptual models. The majority of these catchments classify as subsurface flow path dominated. No catchments were found for conceptual models representing combinations of quick response-new water-subsurface flow (SSF), slow-new-SSF, slow-old-overland flow (OF) nor new-slow-OF. Of the 30 qualitatively classified catchments, 24 provide a complete set of quantitative measures. In summary, the field support is strong for 19 subsurface-dominated catchments and is weak for 5 surface flow path dominated catchments (six catchments had insufficient quantitative data). Two alternative explanations exist for the imbalance of field support between the two flow path classes: (1) the selection of research catchments in past field studies was mainly to explain quick hydrograph response in subsurface dominated catchments; (2) catchments with prevailing subsurface flow paths are more common in nature. We conclude that the selection of research catchments needs to cover a wider variety of environmental conditions which should lead to a broader, and more widely applicable, spectrum of resulting conceptual models and process mechanisms. This is a prerequisite in studies where catchment organization and similarity approaches are used to develop catchment classification systems in order to regionalize stormflow.}, language = {en} } @article{WiesmeierMunroBartholdetal.2015, author = {Wiesmeier, Martin and Munro, Sam and Barthold, Frauke Katrin and Steffens, Markus and Schad, Peter and K{\"o}gel-Knabner, Ingrid}, title = {Carbon storage capacity of semi-arid grassland soils and sequestration potentials in northern China}, series = {Global change biology}, volume = {21}, journal = {Global change biology}, number = {10}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1354-1013}, doi = {10.1111/gcb.12957}, pages = {3836 -- 3845}, year = {2015}, abstract = {Organic carbon (OC) sequestration in degraded semi-arid environments by improved soil management is assumed to contribute substantially to climate change mitigation. However, information about the soil organic carbon (SOC) sequestration potential in steppe soils and their current saturation status remains unknown. In this study, we estimated the OC storage capacity of semi-arid grassland soils on the basis of remote, natural steppe fragments in northern China. Based on the maximum OC saturation of silt and clay particles <20m, OC sequestration potentials of degraded steppe soils (grazing land, arable land, eroded areas) were estimated. The analysis of natural grassland soils revealed a strong linear regression between the proportion of the fine fraction and its OC content, confirming the importance of silt and clay particles for OC stabilization in steppe soils. This relationship was similar to derived regressions in temperate and tropical soils but on a lower level, probably due to a lower C input and different clay mineralogy. In relation to the estimated OC storage capacity, degraded steppe soils showed a high OC saturation of 78-85\% despite massive SOC losses due to unsustainable land use. As a result, the potential of degraded grassland soils to sequester additional OC was generally low. This can be related to a relatively high contribution of labile SOC, which is preferentially lost in the course of soil degradation. Moreover, wind erosion leads to substantial loss of silt and clay particles and consequently results in a direct loss of the ability to stabilize additional OC. Our findings indicate that the SOC loss in semi-arid environments induced by intensive land use is largely irreversible. Observed SOC increases after improved land management mainly result in an accumulation of labile SOC prone to land use/climate changes and therefore cannot be regarded as contribution to long-term OC sequestration.}, language = {en} } @article{BartholdTyrallaSchneideretal.2011, author = {Barthold, Frauke Katrin and Tyralla, Christoph and Schneider, Katrin and Vache, Kellie B. and Frede, Hans-Georg and Breuer, Lutz}, title = {How many tracers do we need for end member mixing analysis (EMMA)? - a sensitivity analysis}, series = {Water resources research}, volume = {47}, journal = {Water resources research}, number = {7360}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0043-1397}, doi = {10.1029/2011WR010604}, pages = {14}, year = {2011}, abstract = {End member mixing analysis (EMMA) is a commonly applied method to identify and quantify the dominant runoff producing sources of water. It employs tracers to determine the dimensionality of the hydrologic system. Many EMMA studies have been conducted using two to six tracers, with some of the main tracers being Ca, Na, Cl(-), water isotopes, and alkalinity. Few studies use larger tracer sets including minor trace elements such as Li, Rb, Sr, and Ba. None of the studies has addressed the question of the tracer set size and composition, despite the fact that these determine which and how many end members (EM) will be identified. We examine how tracer set size and composition affects the conceptual model that results from an EMMA. We developed an automatic procedure that conducts EMMA while iteratively changing tracer set size and composition. We used a set of 14 tracers and 9 EMs. The validity of the resulting conceptual models was investigated under the aspects of dimensionality, EM combinations, and contributions to stream water. From the 16,369 possibilities, 23 delivered plausible results. The resulting conceptual models are highly sensitive to the tracer set size and composition. The moderate reproducibility of EM contributions indicates a still missing EM. It also emphasizes that the major elements are not always the most useful tracers and that larger tracer sets have an enhanced capacity to avoid false conclusions about catchment functioning. The presented approach produces results that may not be apparent from the traditional approach and it is a first step to add the idea of statistical significance to the EMMA approach.}, language = {en} } @article{BartholdWiesmeierBreueretal.2013, author = {Barthold, Frauke Katrin and Wiesmeier, Martin and Breuer, L. and Frede, Hans-Georg and Wu, J. and Blank, F. Benjamin}, title = {Land use and climate control the spatial distribution of soil types in the grasslands of Inner Mongolia}, series = {Journal of arid environments}, volume = {88}, journal = {Journal of arid environments}, number = {1}, publisher = {Elsevier}, address = {London}, issn = {0140-1963}, doi = {10.1016/j.jaridenv.2012.08.004}, pages = {194 -- 205}, year = {2013}, abstract = {The spatial distribution of soil types is controlled by a set of environmental factors such as climate, organisms, parent material and topography as well as time and space. A change of these factors will lead to a change in the spatial distribution of soil types. In this study, we use a digital soil mapping approach to improve our knowledge about major soil type distributing factors in the steppe regions of Inner Mongolia (China) which currently undergo tremendous environmental change, e.g. climate and land use change. We use Random Forests in an effort to map Reference Soil Groups according to the World Reference Base for Soil Resources (WRB) in the Xilin River catchment. We benefit from the superior prediction capabilities of RF and additional interpretive results in order to identify the major environmental factors that control spatial patterns of soil types. The nine WRB soil groups that were identified and spatially predicted for the study area are Arenosol, Calcisol, Cambisol, Chernozem, Cryosol, Gleysol, Kastanozem, Phaeozem and Regosol. Model and prediction performances of the RF model are high with an Out-of-Bag error of 51.6\% for the model and a misclassification error for the predicted map of 28.9\%. The main controlling factors of soil type distribution are land use, a set of topographic variables, geology and climate. However, land use and climate are of major importance and topography and geology are of minor importance. The visualizations of the predictions, the variable importance measures as result of RF and the comparisons of these with the spatial distribution of the environmental factors delivered additional, quantitative information of these controlling factors and revealed that intensively grazed areas are subjected to soil degradation. However, most of the area is still governed by natural soil forming processes which are driven by climate, topography and geology. Most importantly though, our study revealed that a shift towards warmer temperatures and lower precipitation regimes will lead to a change of the spatial distribution of RSGs towards steppe soils that store less carbon, i.e. a decrease of spatial extent of Phaeozems and an increase of spatial extent of Chernozems and Kastanozems.}, language = {en} } @article{WiesmeierPrietzelBartholdetal.2013, author = {Wiesmeier, Martin and Prietzel, J{\"o}rg and Barthold, Frauke Katrin and Sp{\"o}rlein, Peter and Geuss, Uwe and Hangen, Edzard and Reischl, Arthur and Schilling, Bernd and von L{\"u}tzow, Margit and K{\"o}gel-Knabner, Ingrid}, title = {Storage and drivers of organic carbon in forest soils of southeast Germany (Bavaria) - Implications for carbon sequestration}, series = {Forest ecology and management}, volume = {295}, journal = {Forest ecology and management}, number = {10}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0378-1127}, doi = {10.1016/j.foreco.2013.01.025}, pages = {162 -- 172}, year = {2013}, abstract = {Temperate forest soils of central Europe are regarded as important pools for soil organic carbon (SOC) and thought to have a high potential for carbon (C) sequestration. However, comprehensive data on total SOC storage, particularly under different forest types, and its drivers is limited. In this study, we analyzed a forest data set of 596 completely sampled soil profiles down to the parent material or to a depth of 1 m within Bavaria in southeast Germany in order to determine representative SOC stocks under different forest types in central Europe and the impact of different environmental parameters. We calculated a total median SOC stock of 9.8 kg m(-2) which is considerably lower compared with many other inventories within central Europe that used modelled instead of measured soil properties. Statistical analyses revealed climate as controlling parameter for the storage of SOC with increasing stocks in cool, humid mountainous regions and a strong decrease in areas with higher temperatures. No significant differences of total SOC storage were found between broadleaf, coniferous and mixed forests. However, coniferous forests stored around 35\% of total SOC in the labile organic layer that is prone to human disturbance, forest fires and rising temperatures. In contrast, mixed and broadleaf forests stored the major part of SOC in the mineral soil. Moreover, these two forest types showed unchanged or even slightly increased mineral SOC stocks with higher temperatures, whereas SOC stocks in mineral soils under coniferous forest were distinctly lower. We conclude that mixed and broadleaf forests are more advantageous for C sequestration than coniferous forests. An intensified incorporation of broadleaf species in extent coniferous forests of Bavaria would prevent substantial SOC losses as a result of rising temperatures in the course of climate change.}, language = {en} } @article{WiesmeierHuebnerBartholdetal.2013, author = {Wiesmeier, Martin and H{\"u}bner, Rico and Barthold, Frauke Katrin and Sp{\"o}rlein, Peter and Geuss, Uwe and Hangen, Edzard and Reischl, Arthur and Schilling, Bernd and von L{\"u}tzow, Margit and K{\"o}gel-Knabner, Ingrid}, title = {Amount, distribution and driving factors of soil organic carbon and nitrogen in cropland and grassland soils of southeast Germany (Bavaria)}, series = {Agriculture, ecosystems \& environment : an international journal for scientific research on the relationship of agriculture and food production to the biosphere}, volume = {176}, journal = {Agriculture, ecosystems \& environment : an international journal for scientific research on the relationship of agriculture and food production to the biosphere}, number = {32}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0167-8809}, doi = {10.1016/j.agee.2013.05.012}, pages = {39 -- 52}, year = {2013}, abstract = {Agricultural soils have a high potential for sequestration of atmospheric carbon due to their volume and several promising management options. However, there is a remarkable lack of information about the status quo of organic carbon in agricultural soils. In this study a comprehensive data set of 384 cropland soils and 333 grassland soils within the state of Bavaria in southeast Germany was analyzed in order to provide representative information on total amount, regional distribution and driving parameters of soil organic carbon (SOC) and nitrogen (N) in agricultural soils of central Europe. The results showed that grassland soils stored higher amounts of SOC (11.8 kg m(-2)) and N (0.92 kg m(-2)) than cropland soils (9.0 and 0.66 kg m(-2), respectively) due to moisture-induced accumulation of soil organic matter (SOM) in B horizons. Surprisingly, no distinct differences were found for the A horizons since tillage led to a relocation of SOM with depth in cropland soils. Statistical analyses of driving factors for SOM storage revealed soil moisture, represented by the topographic wetness index (TWI), as the most important parameter for both cropland and grassland soils. Climate effects (mean annual temperature and precipitation) were of minor importance in agricultural soils because management options counteracted them to a certain extent, particularly in cropland soils. The distribution of SOC and N stocks within Bavaria based on agricultural regions confirmed the importance of soil moisture since the highest cropland SOC and N stocks were found for tertiary hills and loess regions, which exhibited large areas with potentially high soil moisture content in extant floodplains. Grassland soils showed the highest accumulation of SOC and N in the Alps and Pre-Alps as a result of low temperatures, high amounts of precipitation and high soil moisture content in areas of glacial denudation. Soil class was identified as a further driving parameter for SOC and N storage in cropland soils. In total, cropland and grassland soils in Bavaria store 242 and 134 Mt SOC as well as 19 and 12 Mt N down to a soil depth of 1 m or the parent material, respectively.}, language = {en} }