@article{StiefAltmannHoffmannetal.2014, author = {Stief, Anna and Altmann, Simone and Hoffmann, Karen and Pant, Bikram Datt and Scheible, Wolf-R{\"u}diger and B{\"a}urle, Isabel}, title = {Arabidopsis miR156 regulates tolerance to recurring environmental stress through SPL transcription factors}, series = {The plant cell}, volume = {26}, journal = {The plant cell}, number = {4}, publisher = {American Society of Plant Physiologists}, address = {Rockville}, issn = {1040-4651}, doi = {10.1105/tpc.114.123851}, pages = {1792 -- 1807}, year = {2014}, abstract = {Plants are sessile organisms that gauge stressful conditions to ensure survival and reproductive success. While plants in nature often encounter chronic or recurring stressful conditions, the strategies to cope with those are poorly understood. Here, we demonstrate the involvement of ARGONAUTE1 and the microRNA pathway in the adaptation to recurring heat stress (HS memory) at the physiological and molecular level. We show that miR156 isoforms are highly induced after HS and are functionally important for HS memory. miR156 promotes sustained expression of HS-responsive genes and is critical only after HS, demonstrating that the effects of modulating miR156 on HS memory do not reflect preexisting developmental alterations. miR156 targets SPL transcription factor genes that are master regulators of developmental transitions. SPL genes are posttranscriptionally downregulated by miR156 after HS, and this is critical for HS memory. Altogether, the miR156-SPL module mediates the response to recurring HS in Arabidopsis thaliana and thus may serve to integrate stress responses with development.}, language = {en} } @misc{SzarzynskaSobkowiakPantetal.2009, author = {Szarzynska, Bogna and Sobkowiak, Lukasz and Pant, Bikram Datt and Balazadeh, Salma and Scheible, Wolf-R{\"u}diger and M{\"u}ller-R{\"o}ber, Bernd and Jarmolowski, Artur and Szweykowska-Kulinska, Zofia}, title = {Gene structures and processing of Arabidopsis thaliana HYL1-dependent pri-miRNAs}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-45085}, year = {2009}, abstract = {Arabidopsis thaliana HYL1 is a nuclear doublestranded RNA-binding protein involved in the maturation of pri-miRNAs. A quantitative real-time PCR platform for parallel quantification of 176 primiRNAs was used to reveal strong accumulation of 57 miRNA precursors in the hyl1 mutant that completely lacks HYL1 protein. This approach enabled us for the first time to pinpoint particular members of MIRNA family genes that require HYL1 activity for efficient maturation of their precursors. Moreover, the accumulation of miRNA precursors in the hyl1 mutant gave us the opportunity to carry out 3' and 5' RACE experiments which revealed that some of these precursors are of unexpected length. The alignment of HYL1- dependent miRNA precursors to A. thaliana genomic sequences indicated the presence of introns in 12 out of 20 genes studied. Some of the characterized intron-containing pri-miRNAs undergo alternative splicing such as exon skipping or usage of alternative 5' splice sites suggesting that this process plays a role in the regulation of miRNA biogenesis. In the hyl1 mutant intron-containing pri-miRNAs accumulate alongside spliced primiRNAs suggesting the recruitment of HYL1 into the miRNA precursor maturation pathway before their splicing occurs.}, language = {en} }