@article{CisekTokarzSteupetal.2015, author = {Cisek, Richard and Tokarz, Danielle and Steup, Martin and Tetlow, Ian J. and Emes, Michael J. and Hebelstrup, Kim H. and Blennow, Andreas and Barzda, Virginijus}, title = {Second harmonic generation microscopy investigation of the crystalline ultrastructure of three barley starch lines affected by hydration}, series = {Biomedical optics express}, volume = {6}, journal = {Biomedical optics express}, number = {10}, publisher = {Optical Society of America}, address = {Washington}, issn = {2156-7085}, doi = {10.1364/BOE.6.003694}, pages = {3694 -- 3700}, year = {2015}, abstract = {Second harmonic generation (SHG) microscopy is employed to study changes in crystalline organization due to altered gene expression and hydration in barley starch granules. SHG intensity and susceptibility ratio values (R'(SHG)) are obtained using reduced Stokes-Mueller polarimetric microscopy. The maximum R'(SHG) values occur at moderate moisture indicating the narrowest orientation distribution of nonlinear dipoles from the cylindrical axis of glucan helices. The maximum SHG intensity occurs at the highest moisture and amylopectin content. These results support the hypothesis that SHG is caused by ordered hydrogen and hydroxyl bond networks which increase with hydration of starch granules. (C) 2015 Optical Society of America}, language = {en} }