@article{BoehmerHartmannLeimkuehler2014, author = {Boehmer, Nadine and Hartmann, Tobias and Leimk{\"u}hler, Silke}, title = {The chaperone FdsC for Rhodobacter capsulatus formate dehydrogenase binds the bis-molybdopterin guanine dinucleotide cofactor}, series = {FEBS letters : the journal for rapid publication of short reports in molecular biosciences}, volume = {588}, journal = {FEBS letters : the journal for rapid publication of short reports in molecular biosciences}, number = {4}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0014-5793}, doi = {10.1016/j.febslet.2013.12.033}, pages = {531 -- 537}, year = {2014}, abstract = {Molybdoenzymes are complex enzymes in which the molybdenum cofactor (Moco) is deeply buried in the enzyme. Most molybdoenzymes contain a specific chaperone for the insertion of Moco. For the formate dehydrogenase FdsGBA from Rhodobacter capsulatus the two chaperones FdsC and FdsD were identified to be essential for enzyme activity, but are not a subunit of the mature enzyme. Here, we purified and characterized the FdsC protein after heterologous expression in Escherichia coli. We were able to copurify FdsC with the bound Moco derivate bis-molybdopterin guanine dinucleotide. This cofactor successfully was used as a source to reconstitute the activity of molybdoenzymes. Structured summary of protein interactions: FdsC and FdsC bind by molecular sieving (View interaction) FdsD binds to RcMobA by surface plasmon resonance (View interaction) FdsC binds to RcMobA by surface plasmon resonance (View interaction) FdsC binds to FdsA by surface plasmon resonance (View interaction)}, language = {en} }