@misc{EhrlichKathGaedke2020, author = {Ehrlich, Elias and Kath, Nadja Jeanette and Gaedke, Ursula}, title = {The shape of a defense-growth trade-off governs seasonal trait dynamics in natural phytoplankton}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {6}, issn = {1866-8372}, doi = {10.25932/publishup-51395}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-513956}, pages = {14}, year = {2020}, abstract = {Theory predicts that trade-offs, quantifying costs of functional trait adjustments, crucially affect community trait adaptation to altered environmental conditions, but empirical verification is scarce. We evaluated trait dynamics (antipredator defense, maximum growth rate, and phosphate affinity) of a lake phytoplankton community in a seasonally changing environment, using literature trait data and 21 years of species-resolved high-frequency biomass measurements. The trait data indicated a concave defense-growth trade-off, promoting fast-growing species with intermediate defense. With seasonally increasing grazing pressure, the community shifted toward higher defense levels at the cost of lower growth rates along the trade-off curve, while phosphate affinity explained some deviations from it. We discuss how low fitness differences of species, inferred from model simulations, in concert with stabilizing mechanisms, e.g., arising from further trait dimensions, may lead to the observed phytoplankton diversity. In conclusion, quantifying trade-offs is key for predictions of community trait adaptation and biodiversity under environmental change.}, language = {en} } @phdthesis{Ehrlich2019, author = {Ehrlich, Elias}, title = {On the role of trade-offs in predator-prey interactions}, doi = {10.25932/publishup-43063}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-430631}, school = {Universit{\"a}t Potsdam}, pages = {192}, year = {2019}, abstract = {Predation drives coexistence, evolution and population dynamics of species in food webs, and has strong impacts on related ecosystem functions (e.g. primary production). The effect of predation on these processes largely depends on the trade-offs between functional traits in the predator and prey community. Trade-offs between defence against predation and competitive ability, for example, allow for prey speciation and predator-mediated coexistence of prey species with different strategies (defended or competitive), which may stabilize the overall food web dynamics. While the importance of such trade-offs for coexistence is widely known, we lack an understanding and the empirical evidence of how the variety of differently shaped trade-offs at multiple trophic levels affect biodiversity, trait adaptation and biomass dynamics in food webs. Such mechanistic understanding is crucial for predictions and management decisions that aim to maintain biodiversity and the capability of communities to adapt to environmental change ensuring their persistence. In this dissertation, after a general introduction to predator-prey interactions and tradeoffs, I first focus on trade-offs in the prey between qualitatively different types of defence (e.g. camouflage or escape behaviour) and their costs. I show that these different types lead to different patterns of predator-mediated coexistence and population dynamics, by using a simple predator-prey model. In a second step, I elaborate quantitative aspects of trade-offs and demonstrates that the shape of the trade-off curve in combination with trait-fitness relationships strongly affects competition among different prey types: Either specialized species with extreme trait combinations (undefended or completely defended) coexist, or a species with an intermediate defence level dominates. The developed theory on trade-off shapes and coexistence is kept general, allowing for applications apart from defence-competitiveness trade-offs. Thirdly, I tested the theory on trade-off shapes on a long-term field data set of phytoplankton from Lake Constance. The measured concave trade-off between defence and growth governs seasonal trait changes of phytoplankton in response to an altering grazing pressure by zooplankton, and affects the maintenance of trait variation in the community. In a fourth step, I analyse the interplay of different tradeoffs at multiple trophic levels with plankton data of Lake Constance and a corresponding tritrophic food web model. The results show that the trait and biomass dynamics of the different three trophic levels are interrelated in a trophic biomass-trait cascade, leading to unintuitive patterns of trait changes that are reversed in comparison to predictions from bitrophic systems. Finally, in the general discussion, I extract main ideas on trade-offs in multitrophic systems, develop a graphical theory on trade-off-based coexistence, discuss the interplay of intra- and interspecific trade-offs, and end with a management-oriented view on the results of the dissertation, describing how food webs may respond to future global changes, given their trade-offs.}, language = {en} } @misc{EhrlichGaedke2018, author = {Ehrlich, Elias and Gaedke, Ursula}, title = {Not attackable or not crackable}, series = {Ecology and Evolution}, journal = {Ecology and Evolution}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-417391}, pages = {12}, year = {2018}, abstract = {It is well-known that prey species often face trade-offs between defense against predation and competitiveness, enabling predator-mediated coexistence. However, we lack an understanding of how the large variety of different defense traits with different competition costs affects coexistence and population dynamics. Our study focusses on two general defense mechanisms, that is, pre-attack (e.g., camouflage) and post-attack defenses (e.g., weaponry) that act at different phases of the predator—prey interaction. We consider a food web model with one predator, two prey types and one resource. One prey type is undefended, while the other one is pre-or post-attack defended paying costs either by a higher half-saturation constant for resource uptake or a lower maximum growth rate. We show that post-attack defenses promote prey coexistence and stabilize the population dynamics more strongly than pre-attack defenses by interfering with the predator's functional response: Because the predator spends time handling "noncrackable" prey, the undefended prey is indirectly facilitated. A high half-saturation constant as defense costs promotes coexistence more and stabilizes the dynamics less than a low maximum growth rate. The former imposes high costs at low resource concentrations but allows for temporally high growth rates at predator-induced resource peaks preventing the extinction of the defended prey. We evaluate the effects of the different defense mechanisms and costs on coexistence under different enrichment levels in order to vary the importance of bottom-up and top-down control of the prey community.}, language = {en} }