@article{ManningGossnerBossdorfetal.2015, author = {Manning, Pete and Gossner, Martin M. and Bossdorf, Oliver and Allan, Eric and Zhang, Yuan-Ye and Prati, Daniel and Bl{\"u}thgen, Nico and Boch, Steffen and B{\"o}hm, Stefan and B{\"o}rschig, Carmen and H{\"o}lzel, Norbert and Jung, Kirsten and Klaus, Valentin H. and Klein, Alexandra Maria and Kleinebecker, Till and Krauss, Jochen and Lange, Markus and M{\"u}ller, J{\"o}rg and Pasalic, Esther and Socher, Stephanie A. and Tschapka, Marco and T{\"u}rke, Manfred and Weiner, Christiane and Werner, Michael and Gockel, Sonja and Hemp, Andreas and Renner, Swen C. and Wells, Konstans and Buscot, Francois and Kalko, Elisabeth K. V. and Linsenmair, Karl Eduard and Weisser, Wolfgang W. and Fischer, Markus}, title = {Grassland management intensification weakens the associations among the diversities of multiple plant and animal taxa}, series = {Ecology : a publication of the Ecological Society of America}, volume = {96}, journal = {Ecology : a publication of the Ecological Society of America}, number = {6}, publisher = {Wiley}, address = {Washington}, issn = {0012-9658}, doi = {10.1890/14-1307.1}, pages = {1492 -- 1501}, year = {2015}, abstract = {Land-use intensification is a key driver of biodiversity change. However, little is known about how it alters relationships between the diversities of different taxonomic groups, which are often correlated due to shared environmental drivers and trophic interactions. Using data from 150 grassland sites, we examined how land-use intensification (increased fertilization, higher livestock densities, and increased mowing frequency) altered correlations between the species richness of 15 plant, invertebrate, and vertebrate taxa. We found that 54\% of pairwise correlations between taxonomic groups were significant and positive among all grasslands, while only one was negative. Higher land-use intensity substantially weakened these correlations(35\% decrease in rand 43\% fewer significant pairwise correlations at high intensity), a pattern which may emerge as a result of biodiversity declines and the breakdown of specialized relationships in these conditions. Nevertheless, some groups (Coleoptera, Heteroptera, Hymenoptera and Orthoptera) were consistently correlated with multidiversity, an aggregate measure of total biodiversity comprised of the standardized diversities of multiple taxa, at both high and lowland-use intensity. The form of intensification was also important; increased fertilization and mowing frequency typically weakened plant-plant and plant-primary consumer correlations, whereas grazing intensification did not. This may reflect decreased habitat heterogeneity under mowing and fertilization and increased habitat heterogeneity under grazing. While these results urge caution in using certain taxonomic groups to monitor impacts of agricultural management on biodiversity, they also suggest that the diversities of some groups are reasonably robust indicators of total biodiversity across a range of conditions.}, language = {en} } @article{AllanBossdorfDormannetal.2014, author = {Allan, Eric and Bossdorf, Oliver and Dormann, Carsten F. and Prati, Daniel and Gossner, Martin M. and Tscharntke, Teja and Bl{\"u}thgen, Nico and Bellach, Michaela and Birkhofer, Klaus and Boch, Steffen and B{\"o}hm, Stefan and B{\"o}rschig, Carmen and Chatzinotas, Antonis and Christ, Sabina and Daniel, Rolf and Diek{\"o}tter, Tim and Fischer, Christiane and Friedl, Thomas and Glaser, Karin and Hallmann, Christine and Hodac, Ladislav and H{\"o}lzel, Norbert and Jung, Kirsten and Klein, Alexandra Maria and Klaus, Valentin H. and Kleinebecker, Till and Krauss, Jochen and Lange, Markus and Morris, E. Kathryn and M{\"u}ller, J{\"o}rg and Nacke, Heiko and Pasalic, Esther and Rillig, Matthias C. and Rothenwoehrer, Christoph and Schally, Peter and Scherber, Christoph and Schulze, Waltraud X. and Socher, Stephanie A. and Steckel, Juliane and Steffan-Dewenter, Ingolf and T{\"u}rke, Manfred and Weiner, Christiane N. and Werner, Michael and Westphal, Catrin and Wolters, Volkmar and Wubet, Tesfaye and Gockel, Sonja and Gorke, Martin and Hemp, Andreas and Renner, Swen C. and Sch{\"o}ning, Ingo and Pfeiffer, Simone and K{\"o}nig-Ries, Birgitta and Buscot, Francois and Linsenmair, Karl Eduard and Schulze, Ernst-Detlef and Weisser, Wolfgang W. and Fischer, Markus}, title = {Interannual variation in land-use intensity enhances grassland multidiversity}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {111}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {1}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1312213111}, pages = {308 -- 313}, year = {2014}, abstract = {Although temporal heterogeneity is a well-accepted driver of biodiversity, effects of interannual variation in land-use intensity (LUI) have not been addressed yet. Additionally, responses to land use can differ greatly among different organisms; therefore, overall effects of land-use on total local biodiversity are hardly known. To test for effects of LUI (quantified as the combined intensity of fertilization, grazing, and mowing) and interannual variation in LUI (SD in LUI across time), we introduce a unique measure of whole-ecosystem biodiversity, multidiversity. This synthesizes individual diversity measures across up to 49 taxonomic groups of plants, animals, fungi, and bacteria from 150 grasslands. Multidiversity declined with increasing LUI among grasslands, particularly for rarer species and aboveground organisms, whereas common species and belowground groups were less sensitive. However, a high level of interannual variation in LUI increased overall multidiversity at low LUI and was even more beneficial for rarer species because it slowed the rate at which the multidiversity of rare species declined with increasing LUI. In more intensively managed grasslands, the diversity of rarer species was, on average, 18\% of the maximum diversity across all grasslands when LUI was static over time but increased to 31\% of the maximum when LUI changed maximally over time. In addition to decreasing overall LUI, we suggest varying LUI across years as a complementary strategy to promote biodiversity conservation.}, language = {en} } @article{SocherPratiBochetal.2013, author = {Socher, Stephanie A. and Prati, Daniel and Boch, Steffen and M{\"u}ller, J{\"o}rg and Baumbach, Henryk and Gockel, Sonja and Hemp, Andreas and Sch{\"o}ning, Ingo and Wells, Konstans and Buscot, Francois and Kalko, Elisabeth K. V. and Linsenmair, Karl Eduard and Schulze, Ernst-Detlef and Weisser, Wolfgang W. and Fischer, Markus}, title = {Interacting effects of fertilization, mowing and grazing on plant species diversity of 1500 grasslands in Germany differ between regions}, series = {Basic and applied ecology : Journal of the Gesellschaft f{\"u}r {\"O}kologie}, volume = {14}, journal = {Basic and applied ecology : Journal of the Gesellschaft f{\"u}r {\"O}kologie}, number = {2}, publisher = {Elsevier}, address = {Jena}, issn = {1439-1791}, doi = {10.1016/j.baae.2012.12.003}, pages = {126 -- 136}, year = {2013}, abstract = {The relationship of different types of grassland use with plant species richness and composition ( functional groups of herbs, legumes, and grasses) has so far been studied at small regional scales or comprising only few components of land use. We comprehensively studied the relationship between abandonment, fertilization, mowing intensity, and grazing by different livestock types on plant diversity and composition of 1514 grassland sites in three regions in North-East, Central and South-West Germany. We further considered environmental site conditions including soil type and topographical situation. Fertilized grasslands showed clearly reduced plant species diversity (-15\% plant species richness, -0.1 Shannon diversity on fertilized grasslands plots of 16m(2)) and changed composition (-3\% proportion of herb species), grazing had the second largest effects and mowing the smallest ones. Among the grazed sites, the ones grazed by sheep had higher than average species richness (+27\%), and the cattle grazed ones lower (-42\%). Further, these general results were strongly modulated by interactions between the different components of land use and by regional context: land-use effects differed largely in size and sometimes even in direction between regions. This highlights the importance of comparing different regions and to involve a large number of plots}, language = {en} } @article{BochPratiMuelleretal.2013, author = {Boch, Steffen and Prati, Daniel and M{\"u}ller, J{\"o}rg and Socher, Stephanie and Baumbach, Henryk and Buscot, Francois and Gockel, Sonja and Hemp, Andreas and Hessenm{\"o}ller, Dominik and Kalko, Elisabeth K. V. and Linsenmair, K. Eduard and Pfeiffer, Simone and Pommer, Ulf and Sch{\"o}ning, Ingo and Schulze, Ernst-Detlef and Seilwinder, Claudia and Weisser, Wolfgang W. and Wells, Konstans and Fischer, Markus}, title = {High plant species richness indicates management-related disturbances rather than the conservation status of forests}, series = {Basic and applied ecology : Journal of the Gesellschaft f{\"u}r {\"O}kologie}, volume = {14}, journal = {Basic and applied ecology : Journal of the Gesellschaft f{\"u}r {\"O}kologie}, number = {6}, publisher = {Elsevier}, address = {Jena}, issn = {1439-1791}, doi = {10.1016/j.baae.2013.06.001}, pages = {496 -- 505}, year = {2013}, abstract = {There is a wealth of smaller-scale studies on the effects of forest management on plant diversity. However, studies comparing plant species diversity in forests with different management types and intensity, extending over different regions and forest stages, and including detailed information on site conditions are missing. We studied vascular plants on 1500 20 m x 20 m forest plots in three regions of Germany (Schwabische Alb, Hainich-Dun, Schorfheide-Chorin). In all regions, our study plots comprised different management types (unmanaged, selection cutting, deciduous and coniferous age-class forests, which resulted from clear cutting or shelterwood logging), various stand ages, site conditions, and levels of management-related disturbances. We analyzed how overall richness and richness of different plant functional groups (trees, shrubs, herbs, herbaceous species typically growing in forests and herbaceous light-demanding species) responded to the different management types. On average, plant species richness was 13\% higher in age-class than in unmanaged forests, and did not differ between deciduous age-class and selection forests. In age-class forests of the Schwabische Alb and Hainich-Dun, coniferous stands had higher species richness than deciduous stands. Among age-class forests, older stands with large quantities of standing biomass were slightly poorer in shrub and light-demanding herb species than younger stands. Among deciduous forests, the richness of herbaceous forest species was generally lower in unmanaged than in managed forests, and it was even 20\% lower in unmanaged than in selection forests in Hainich-Dun. Overall, these findings show that disturbances by management generally increase plant species richness. This suggests that total plant species richness is not suited as an indicator for the conservation status of forests, but rather indicates disturbances.}, language = {en} } @article{KlausKleinebeckerPratietal.2013, author = {Klaus, Valentin H. and Kleinebecker, Till and Prati, Daniel and Gossner, Martin M. and Alt, Fabian and Boch, Steffen and Gockel, Sonja and Hemp, Andreas and Lange, Markus and M{\"u}ller, J{\"o}rg and Oelmann, Yvonne and Pasalic, Esther and Renner, Swen C. and Socher, Stephanie A. and T{\"u}rke, Manfred and Weisser, Wolfgang W. and Fischer, Markus and H{\"o}lzel, Norbert}, title = {Does organic grassland farming benefit plant and arthropod diversity at the expense of yield and soil fertility?}, series = {Agriculture, ecosystems \& environment : an international journal for scientific research on the relationship of agriculture and food production to the biosphere}, volume = {177}, journal = {Agriculture, ecosystems \& environment : an international journal for scientific research on the relationship of agriculture and food production to the biosphere}, number = {3}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0167-8809}, doi = {10.1016/j.agee.2013.05.019}, pages = {1 -- 9}, year = {2013}, abstract = {Organic management is one of the most popular strategies to reduce negative environmental impacts of intensive agriculture. However, little is known about benefits for biodiversity and potential worsening of yield under organic grasslands management across different grassland types, i.e. meadow, pasture and mown pasture. Therefore, we studied the diversity of vascular plants and foliage-living arthropods (Coleoptera, Araneae, Heteroptera, Auchenorrhyncha), yield, fodder quality, soil phosphorus concentrations and land-use intensity of organic and conventional grasslands across three study regions in Germany. Furthermore, all variables were related to the time since conversion to organic management in order to assess temporal developments reaching up to 18 years. Arthropod diversity was significantly higher under organic than conventional management, although this was not the case for Araneae, Heteroptera and Auchenorrhyncha when analyzed separately. On the contrary, arthropod abundance, vascular plant diversity and also yield and fodder quality did not considerably differ between organic and conventional grasslands. Analyses did not reveal differences in the effect of organic management among grassland types. None of the recorded abiotic and biotic parameters showed a significant trend with time since transition to organic management, except soil organic phosphorus concentrations which decreased with time. This implies that permanent grasslands respond slower and probably weaker to organic management than crop fields do. However, as land-use intensity and inorganic soil phosphorus concentrations were significantly lower in organic grasslands, overcoming seed and dispersal limitation by re-introducing plant species might be needed to exploit the full ecological potential of organic grassland management. We conclude that although organic management did not automatically increase the diversity of all studied taxa, it is a reasonable and useful way to support agro-biodiversity.}, language = {en} } @article{BluethgenDormannPratietal.2012, author = {Bl{\"u}thgen, Nico and Dormann, Carsten F. and Prati, Daniel and Klaus, Valentin H. and Kleinebecker, Till and Hoelzel, Norbert and Alt, Fabian and Boch, Steffen and Gockel, Sonja and Hemp, Andreas and M{\"u}ller, J{\"o}rg and Nieschulze, Jens and Renner, Swen C. and Sch{\"o}ning, Ingo and Schumacher, Uta and Socher, Stephanie A. and Wells, Konstans and Birkhofer, Klaus and Buscot, Francois and Oelmann, Yvonne and Rothenw{\"o}hrer, Christoph and Scherber, Christoph and Tscharntke, Teja and Weiner, Christiane N. and Fischer, Markus and Kalko, Elisabeth K. V. and Linsenmair, Karl Eduard and Schulze, Ernst-Detlef and Weisser, Wolfgang W.}, title = {A quantitative index of land-use intensity in grasslands integrating mowing, grazing and fertilization}, series = {Basic and applied ecology : Journal of the Gesellschaft f{\"u}r {\"O}kologie}, volume = {13}, journal = {Basic and applied ecology : Journal of the Gesellschaft f{\"u}r {\"O}kologie}, number = {3}, publisher = {Elsevier}, address = {Jena}, issn = {1439-1791}, doi = {10.1016/j.baae.2012.04.001}, pages = {207 -- 220}, year = {2012}, abstract = {Land use is increasingly recognized as a major driver of biodiversity and ecosystem functioning in many current research projects. In grasslands, land use is often classified by categorical descriptors such as pastures versus meadows or fertilized versus unfertilized sites. However, to account for the quantitative variation of multiple land-use types in heterogeneous landscapes, a quantitative, continuous index of land-use intensity (LUI) is desirable. Here we define such a compound, additive LUI index for managed grasslands including meadows and pastures. The LUI index summarizes the standardized intensity of three components of land use, namely fertilization, mowing, and livestock grazing at each site. We examined the performance of the LUI index to predict selected response variables on up to 150 grassland sites in the Biodiversity Exploratories in three regions in Germany(Alb, Hainich, Schorlheide). We tested the average Ellenberg nitrogen indicator values of the plant community, nitrogen and phosphorus concentration in the aboveground plant biomass, plant-available phosphorus concentration in the top soil, and soil C/N ratio, and the first principle component of these five response variables. The LUI index significantly predicted the principal component of all five response variables, as well as some of the individual responses. Moreover, vascular plant diversity decreased significantly with LUI in two regions (Alb and Hainich). Inter-annual changes in management practice were pronounced from 2006 to 2008, particularly due to variation in grazing intensity. This rendered the selection of the appropriate reference year(s) an important decision for analyses of land-use effects, whereas details in the standardization of the index were of minor importance. We also tested several alternative calculations of a LUI index, but all are strongly linearly correlated to the proposed index. The proposed LUI index reduces the complexity of agricultural practices to a single dimension and may serve as a baseline to test how different groups of organisms and processes respond to land use. In combination with more detailed analyses, this index may help to unravel whether and how land-use intensities, associated disturbance levels or other local or regional influences drive ecological processes.}, language = {en} } @article{WellsO'HaraBoehmetal.2012, author = {Wells, Konstans and O'Hara, R. B. and Boehm, S. M. and Gockel, Sonja and Hemp, Andreas and Renner, S. C. and Pfeiffer, S. and Boehning-Gaese, Katrin and Kalko, Elisabeth K. V.}, title = {Trait-dependent occupancy dynamics of birds in temperate forest landscapes fine-scale observations in a hierarchical multi-species framework}, series = {Animal conservation}, volume = {15}, journal = {Animal conservation}, number = {6}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1367-9430}, doi = {10.1111/j.1469-1795.2012.00560.x}, pages = {626 -- 637}, year = {2012}, abstract = {Silvicultural practices lead to changes in forest composition and structure and may impact species diversity from the overall regional species pool to stand-level species occurrence. We explored to what extent fine-scale occupancy patterns in differently managed forest stands are driven by environment and ecological traits in three regions in Germany using a multi-species hierarchical model. We tested for the possible impact of environmental variables and ecological traits on occupancy dynamics in a joint modelling exercise while taking possible variation in coefficient estimates over years and plots into account. Bird species richness differed across regions and years, and trends in species richness across years were different in the three regions. On the species level, forest management affected occupancy of species in all regions, but only 35\% of the total assemblage-level variation in occurrence probability was explained by either forest type and successional stage and