@article{AlbertAuffretCosynsetal.2015, author = {Albert, Aurelie and Auffret, Alistair G. and Cosyns, Eric and Cousins, Sara A. O. and Eichberg, Carsten and Eycott, Amy E. and Heinken, Thilo and Hoffmann, Maurice and Jaroszewicz, Bogdan and Malo, Juan E. and Marell, Anders and Mouissie, Maarten and Pakeman, Robin J. and Picard, Melanie and Plue, Jan and Poschlod, Peter and Provoost, Sam and Schulze, Kiowa Alraune and Baltzinger, Christophe}, title = {Seed dispersal by ungulates as an ecological filter: a trait-based meta-analysis}, series = {Oikos}, volume = {124}, journal = {Oikos}, number = {9}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0030-1299}, doi = {10.1111/oik.02512}, pages = {1109 -- 1120}, year = {2015}, abstract = {Plant communities are often dispersal-limited and zoochory can be an efficient mechanism for plants to colonize new patches of potentially suitable habitat. We predicted that seed dispersal by ungulates acts as an ecological filter - which differentially affects individuals according to their characteristics and shapes species assemblages - and that the filter varies according to the dispersal mechanism (endozoochory, fur-epizoochory and hoof-epizoochory). We conducted two-step individual participant data meta-analyses of 52 studies on plant dispersal by ungulates in fragmented landscapes, comparing eight plant traits and two habitat indicators between dispersed and non-dispersed plants. We found that ungulates dispersed at least 44\% of the available plant species. Moreover, some plant traits and habitat indicators increased the likelihood for plant of being dispersed. Persistent or nitrophilous plant species from open habitats or bearing dry or elongated diaspores were more likely to be dispersed by ungulates, whatever the dispersal mechanism. In addition, endozoochory was more likely for diaspores bearing elongated appendages whereas epizoochory was more likely for diaspores released relatively high in vegetation. Hoof-epizoochory was more likely for light diaspores without hooked appendages. Fur-epizoochory was more likely for diaspores with appendages, particularly elongated or hooked ones. We thus observed a gradient of filtering effect among the three dispersal mechanisms. Endozoochory had an effect of rather weak intensity (impacting six plant characteristics with variations between ungulate-dispersed and non-dispersed plant species mostly below 25\%), whereas hoof-epizoochory had a stronger effect (eight characteristics included five ones with above 75\% variation), and fur-epizoochory an even stronger one (nine characteristics included six ones with above 75\% variation). Our results demonstrate that seed dispersal by ungulates is an ecological filter whose intensity varies according to the dispersal mechanism considered. Ungulates can thus play a key role in plant community dynamics and have implications for plant spatial distribution patterns at multiple scales.}, language = {en} } @article{CaronDeFrenneBrunetetal.2015, author = {Caron, Maria Mercedes and De Frenne, Pieter and Brunet, J{\"o}rg and Chabrerie, Olivier and Cousins, Sara A. O. and Decocq, Guillaume and Diekmann, Martin and Graae, Bente Jessen and Heinken, Thilo and Kolb, Annette and Lenoir, Jonathan and Naaf, Tobias and Plue, Jan and Selvi, Federico and Wulf, Monika and Verheyen, Kris}, title = {Divergent regeneration responses of two closely related tree species to direct abiotic and indirect biotic effects of climate change}, series = {Forest ecology and management}, volume = {342}, journal = {Forest ecology and management}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0378-1127}, doi = {10.1016/j.foreco.2015.01.003}, pages = {21 -- 29}, year = {2015}, abstract = {Changing temperature and precipitation can strongly influence plant reproduction. However, also biotic interactions might indirectly affect the reproduction and recruitment success of plants in the context of climate change. Information about the interactive effects of changes in abiotic and biotic factors is essential, but still largely lacking, to better understand the potential effects of a changing climate on plant populations. Here we analyze the regeneration from seeds of Acer platanoides and Acer pseudoplatanus, two currently secondary forest tree species from seven regions along a 2200 km-wide latitudinal gradient in Europe. We assessed the germination, seedling survival and growth during two years in a common garden experiment where temperature, precipitation and competition with the understory vegetation were manipulated. A. platanoides was more sensitive to changes in biotic conditions while A. pseudoplatanus was affected by both abiotic and biotic changes. In general, competition reduced (in A. platanoides) and warming enhanced (in A. pseudoplatanus) germination and survival, respectively. Reduced competition strongly increased the growth of A. platanoides seedlings. Seedling responses were independent of the conditions experienced by the mother tree during seed production and maturation. Our results indicate that, due to the negative effects of competition on the regeneration of A. platanoides, it is likely that under stronger competition (projected under future climatic conditions) this species will be negatively affected in terms of germination, survival and seedling biomass. Climate-change experiments including both abiotic and biotic factors constitute a key step forward to better understand the response of tree species' regeneration to climate change. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} }