@phdthesis{Schauer2006, author = {Schauer, Nicolas}, title = {Quantitative trait loci (QTL) for metabolite accumulation and metabolic regulation : metabolite profiling of interspecific crosses of tomato}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-7643}, school = {Universit{\"a}t Potsdam}, year = {2006}, abstract = {The advent of large-scale and high-throughput technologies has recently caused a shift in focus in contemporary biology from decades of reductionism towards a more systemic view. Alongside the availability of genome sequences the exploration of organisms utilizing such approach should give rise to a more comprehensive understanding of complex systems. Domestication and intensive breeding of crop plants has led to a parallel narrowing of their genetic basis. The potential to improve crops by conventional breeding using elite cultivars is therefore rather limited and molecular technologies, such as marker assisted selection (MAS) are currently being exploited to re-introduce allelic variance from wild species. Molecular breeding strategies have mostly focused on the introduction of yield or resistance related traits to date. However given that medical research has highlighted the importance of crop compositional quality in the human diet this research field is rapidly becoming more important. Chemical composition of biological tissues can be efficiently assessed by metabolite profiling techniques, which allow the multivariate detection of metabolites of a given biological sample. Here, a GC/MS metabolite profiling approach has been applied to investigate natural variation of tomatoes with respect to the chemical composition of their fruits. The establishment of a mass spectral and retention index (MSRI) library was a prerequisite for this work in order to establish a framework for the identification of metabolites from a complex mixture. As mass spectral and retention index information is highly important for the metabolomics community this library was made publicly available. Metabolite profiling of tomato wild species revealed large differences in the chemical composition, especially of amino and organic acids, as well as on the sugar composition and secondary metabolites. Intriguingly, the analysis of a set of S. pennellii introgression lines (IL) identified 889 quantitative trait loci of compositional quality and 326 yield-associated traits. These traits are characterized by increases/decreases not only of single metabolites but also of entire metabolic pathways, thus highlighting the potential of this approach in uncovering novel aspects of metabolic regulation. Finally the biosynthetic pathway of the phenylalanine-derived fruit volatiles phenylethanol and phenylacetaldehyde was elucidated via a combination of metabolic profiling of natural variation, stable isotope tracer experiments and reverse genetic experimentation.}, subject = {Tomate}, language = {en} } @misc{ZwaagHorstBlaženovićetal.2020, author = {Zwaag, Jelle and Horst, Rob ter and Blaženović, Ivana and St{\"o}ßel, Daniel and Ratter, Jacqueline and Worseck, Josephine M. and Schauer, Nicolas and Stienstra, Rinke and Netea, Mihai G. and Jahn, Dieter and Pickkers, Peter and Kox, Matthijs}, title = {Involvement of lactate and pyruvate in the anti-inflammatory effects exerted by voluntary activation of the sympathetic nervous system}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {4}, issn = {1866-8372}, doi = {10.25932/publishup-51778}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-517784}, pages = {20}, year = {2020}, abstract = {We recently demonstrated that the sympathetic nervous system can be voluntarily activated following a training program consisting of cold exposure, breathing exercises, and meditation. This resulted in profound attenuation of the systemic inflammatory response elicited by lipopolysaccharide (LPS) administration. Herein, we assessed whether this training program affects the plasma metabolome and if these changes are linked to the immunomodulatory effects observed. A total of 224 metabolites were identified in plasma obtained from 24 healthy male volunteers at six timepoints, of which 98 were significantly altered following LPS administration. Effects of the training program were most prominent shortly after initiation of the acquired breathing exercises but prior to LPS administration, and point towards increased activation of the Cori cycle. Elevated concentrations of lactate and pyruvate in trained individuals correlated with enhanced levels of anti-inflammatory interleukin (IL)-10. In vitro validation experiments revealed that co-incubation with lactate and pyruvate enhances IL-10 production and attenuates the release of pro-inflammatory IL-1 beta and IL-6 by LPS-stimulated leukocytes. Our results demonstrate that practicing the breathing exercises acquired during the training program results in increased activity of the Cori cycle. Furthermore, this work uncovers an important role of lactate and pyruvate in the anti-inflammatory phenotype observed in trained subjects.}, language = {en} }