@misc{ApriyantoCompartFettke2022, author = {Apriyanto, Ardha and Compart, Julia and Fettke, J{\"o}rg}, title = {A review of starch, a unique biopolymer - structure, metabolism and in planta modifications}, series = {Plant science : an international journal of experimental plant biology}, volume = {318}, journal = {Plant science : an international journal of experimental plant biology}, publisher = {Elsevier Science}, address = {Amsterdam [u.a.]}, issn = {0168-9452}, doi = {10.1016/j.plantsci.2022.111223}, pages = {8}, year = {2022}, abstract = {Starch is a complex carbohydrate polymer produced by plants and especially by crops in huge amounts. It consists of amylose and amylopectin, which have alpha-1,4-and alpha-1,6-linked glucose units. Despite this simple chemistry, the entire starch metabolism is complex, containing various (iso)enzymes/proteins. However, whose interplay is still not yet fully understood. Starch is essential for humans and animals as a source of nutrition and energy. Nowadays, starch is also commonly used in non-food industrial sectors for a variety of purposes. However, native starches do not always satisfy the needs of a wide range of (industrial) applications. This review summarizes the structural properties of starch, analytical methods for starch characterization, and in planta starch modifications.}, language = {en} } @phdthesis{Apriyanto2023, author = {Apriyanto, Ardha}, title = {Analysis of starch metabolism in source and sink tissue of plants}, school = {Universit{\"a}t Potsdam}, pages = {166}, year = {2023}, abstract = {Starch is an essential biopolymer produced by plants. Starch can be made inside source tissue (such as leaves) and sink tissue (such as fruits and tubers). Nevertheless, understanding how starch metabolism is regulated in source and sink tissues is fundamental for improving crop production. Despite recent advances in the understanding of starch and its metabolism, there is still a knowledge gap in the source and sink metabolism. Therefore, this study aimed to summarize the state of the art regarding starch structure and metabolism inside plants. In addition, this study aimed to elucidate the regulation of starch metabolism in the source tissue using the leaves of a model organism, Arabidopsis thaliana, and the sink tissue of oil palm (Elaeis guineensis) fruit as a commercial crop. The research regarding the source tissue will focus on the effect of the blockage of starch degradation on the starch parameter in leaves, especially in those of A. thaliana, which lack both disproportionating enzyme 2 (DPE2) and plastidial glucan phosphorylase 1 (PHS1) (dpe2/phs1). The additional elimination of phosphoglucan water dikinase (PWD), starch excess 4 (SEX4), isoamylase 3 (ISA3), and disproportionating enzyme 1 (DPE1) in the dpe2/phs1 mutant background demonstrates the alteration of starch granule number per chloroplast. This study provides insights into the control mechanism of granule number regulation in the chloroplast. The research regarding the sink tissue will emphasize the relationship between starch metabolism and the lipid metabolism pathway in oil palm fruits. This study was conducted to observe the alteration of starch parameters, metabolite abundance, and gene expression during oil palm fruit development with different oil yields. This study shows that starch and sucrose can be used as biomarkers for oil yield in oil palms. In addition, it is revealed that the enzyme isoforms related to starch metabolism influence the oil production in oil palm fruit. Overall, this thesis presents novel information regarding starch metabolism in the source tissue of A.thaliana and the sink tissue of E.guineensis. The results shown in this thesis can be applied to many applications, such as modifying the starch parameter in other plants for specific needs.}, language = {en} } @article{SchmiederNitschkeSteupetal.2013, author = {Schmieder, Peter and Nitschke, Felix and Steup, Martin and Mallow, Keven and Specker, Edgar}, title = {Determination of glucan phosphorylation using heteronuclear H-1,C-13 double and H-1,C-13,P-31 triple-resonance NMR spectra}, series = {Magnetic resonance in chemistry}, volume = {51}, journal = {Magnetic resonance in chemistry}, number = {10}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0749-1581}, doi = {10.1002/mrc.3996}, pages = {655 -- 661}, year = {2013}, abstract = {Phosphorylation and dephosphorylation of starch and glycogen are important for their physicochemical properties and also their physiological functions. It is therefore desirable to reliably determine the phosphorylation sites. Heteronuclear multidimensional NMR-spectroscopy is in principle a straightforward analytical approach even for complex carbohydrate molecules. With heterogeneous samples from natural sources, however, the task becomes more difficult because a full assignment of the resonances of the carbohydrates is impossible to obtain. Here, we show that the combination of heteronuclear H-1,C-13 and H-1,C-13,P-31 techniques and information derived from spectra of a set of reference compounds can lead to an unambiguous determination of the phosphorylation sites even in heterogeneous samples.}, language = {en} } @article{ApriyantoCompartZimmermannetal.2022, author = {Apriyanto, Ardha and Compart, Julia and Zimmermann, Vincent and Alseekh, Saleh and Fernie, Alisdair and Fettke, J{\"o}rg}, title = {Indication that starch and sucrose are biomarkers for oil yield in oil palm (Elaeis guineensis Jacq.)}, series = {Food chemistry}, volume = {393}, journal = {Food chemistry}, publisher = {Elsevier}, address = {New York, NY [u.a.]}, issn = {0308-8146}, doi = {10.1016/j.foodchem.2022.133361}, pages = {11}, year = {2022}, abstract = {Oil palm (Elaeis guineensis Jacq.) is the most productive oil-producing crop per hectare of land. The oil that accumulates in the mesocarp tissue of the fruit is the highest observed among fruit-producing plants. A comparative analysis between high-, medium-, and low-yielding oil palms, particularly during fruit development, revealed unique characteristics. Metabolomics analysis was able to distinguish accumulation patterns defining of the various developmental stages and oil yield. Interestingly, high- and medium-yielding oil palms exhibited substantially increased sucrose levels compared to low-yielding palms. In addition, parameters such as starch granule morphology, granule size, total starch content, and starch chain length distribution (CLD) differed significantly among the oil yield categories with a clear correlation between oil yield and various starch parameters. These results provide new insights into carbohydrate and starch metabolism for biosynthesis of oil palm fruits, indicating that starch and sucrose can be used as novel, easy-to-analyze, and reliable biomarker for oil yield.}, language = {en} } @article{SinghCompartALRawietal.2022, author = {Singh, Aakanksha and Compart, Julia and AL-Rawi, Shadha Abduljaleel and Mahto, Harendra and Ahmad, Abubakar Musa and Fettke, J{\"o}rg}, title = {LIKE EARLY STARVATION 1 alters the glucan structures at the starch granule surface and thereby influences the action of both starch-synthesizing and starch-degrading enzymes}, series = {The plant journal}, volume = {111}, journal = {The plant journal}, number = {3}, publisher = {Wiley-Blackwell}, address = {Oxford}, issn = {0960-7412}, doi = {10.1111/tpj.15855}, pages = {819 -- 835}, year = {2022}, abstract = {For starch metabolism to take place correctly, various enzymes and proteins acting on the starch granule surface are crucial. Recently, two non-catalytic starch-binding proteins, pivotal for normal starch turnover in Arabidopsis leaves, namely, EARLY STARVATION 1 (ESV1) and its homolog LIKE EARLY STARVATION 1 (LESV), have been identified. Both share nearly 38\% sequence homology. As ESV1 has been found to influence glucan phosphorylation via two starch-related dikinases, alpha-glucan, water dikinase (GWD) and phosphoglucan, water dikinase (PWD), through modulating the surface glucan structures of the starch granules and thus affecting starch degradation, we assess the impact of its homolog LESV on starch metabolism. Thus, the 65-kDa recombinant protein LESV and the 50-kDa ESV1 were analyzed regarding their influence on the action of GWD and PWD on the surface of the starch granules. We included starches from various sources and additionally assessed the effect of these non-enzymatic proteins on other starch-related enzymes, such as starch synthases (SSI and SSIII), starch phosphorylases (PHS1), isoamylase and beta-amylase. The data obtained indicate that starch phosphorylation, hydrolyses and synthesis were affected by LESV and ESV1. Furthermore, incubation with LESV and ESV1 together exerted an additive effect on starch phosphorylation. In addition, a stable alteration of the glucan structures at the starch granule surface following treatment with LESV and ESV1 was observed. Here, we discuss all the observed changes that point to modifications in the glucan structures at the surface of the native starch granules and present a model to explain the existing processes.}, language = {en} } @phdthesis{Nitschke2013, author = {Nitschke, Felix}, title = {Phosphorylation of polyglycans, especially glycogen and starch}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-67396}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Functional metabolism of storage carbohydrates is vital to plants and animals. The water-soluble glycogen in animal cells and the amylopectin which is the major component of water-insoluble starch granules residing in plant plastids are chemically similar as they consist of α-1,6 branched α-1,4 glucan chains. Synthesis and degradation of transitory starch and of glycogen are accomplished by a set of enzymatic activities that to some extend are also similar in plants and animals. Chain elongation, branching, and debranching are achieved by synthases, branching enzymes, and debranching enzymes, respectively. Similarly, both types of polyglucans contain low amounts of phosphate esters whose abundance varies depending on species and organs. Starch is selectively phosphorylated by at least two dikinases (GWD and PWD) at the glucosyl carbons C6 and C3 and dephosphorylated by the phosphatase SEX4 and SEX4-like enzymes. In Arabidopsis insufficiency in starch phosphorylation or dephosphorylation results in largely impaired starch turnover, starch accumulation, and often in retardation of growth. In humans the progressive neurodegenerative epilepsy, Lafora disease, is the result of a defective enzyme (laforin) that is functional equivalent to the starch phosphatase SEX4 and capable of glycogen dephosphorylation. Patients lacking laforin progressively accumulate unphysiologically structured insoluble glycogen-derived particles (Lafora bodies) in many tissues including brain. Previous results concerning the carbon position of glycogen phosphate are contradictory. Currently it is believed that glycogen is esterified exclusively at the carbon positions C2 and C3 and that the monophosphate esters, being incorporated via a side reaction of glycogen synthase (GS), lack any specific function but are rather an enzymatic error that needs to be corrected. In this study a versatile and highly sensitive enzymatic cycling assay was established that enables quantification of very small G6P amounts in the presence of high concentrations of non-target compounds as present in hydrolysates of polysaccharides, such as starch, glycogen, or cytosolic heteroglycans in plants. Following validation of the G6P determination by analyzing previously characterized starches G6P was quantified in hydrolysates of various glycogen samples and in plant heteroglycans. Interestingly, glucosyl C6 phosphate is present in all glycogen preparations examined, the abundance varying between glycogens of different sources. Additionally, it was shown that carbon C6 is severely hyperphosphorylated in glycogen of Lafora disease mouse model and that laforin is capable of removing C6 phosphate from glycogen. After enrichment of phosphoglucans from amylolytically degraded glycogen, several techniques of two-dimensional NMR were applied that independently proved the existence of 6-phosphoglucosyl residues in glycogen and confirmed the recently described phosphorylation sites C2 and C3. C6 phosphate is neither Lafora disease- nor species-, or organ-specific as it was demonstrated in liver glycogen from laforin-deficient mice and in that of wild type rabbit skeletal muscle. The distribution of 6-phosphoglucosyl residues was analyzed in glycogen molecules and has been found to be uneven. Gradual degradation experiments revealed that C6 phosphate is more abundant in central parts of the glycogen molecules and in molecules possessing longer glucan chains. Glycogen of Lafora disease mice consistently contains a higher proportion of longer chains while most short chains were reduced as compared to wild type. Together with results recently published (Nitschke et al., 2013) the findings of this work completely unhinge the hypothesis of GS-mediated phosphate incorporation as the respective reaction mechanism excludes phosphorylation of this glucosyl carbon, and as it is difficult to explain an uneven distribution of C6 phosphate by a stochastic event. Indeed the results rather point to a specific function of 6-phosphoglucosyl residues in the metabolism of polysaccharides as they are present in starch, glycogen, and, as described in this study, in heteroglycans of Arabidopsis. In the latter the function of phosphate remains unclear but this study provides evidence that in starch and glycogen it is related to branching. Moreover a role of C6 phosphate in the early stages of glycogen synthesis is suggested. By rejecting the current view on glycogen phosphate to be a stochastic biochemical error the results permit a wider view on putative roles of glycogen phosphate and on alternative biochemical ways of glycogen phosphorylation which for many reasons are likely to be mediated by distinct phosphorylating enzymes as it is realized in starch metabolism of plants. Better understanding of the enzymology underlying glycogen phosphorylation implies new possibilities of Lafora disease treatment.}, language = {en} } @article{DauvilleeChochoisSteupetal.2006, author = {Dauvillee, David and Chochois, Vincent and Steup, Martin and Haebel, Sophie and Eckermann, Nora and Ritte, Gerhard and Ral, Jean-Philippe and Colleoni, Christophe and Hicks, Glenn and Wattebled, Fabrice and Deschamps, Philippe and Lienard, Luc and Cournac, Laurent and Putaux, Jean-Luc and Dupeyre, Danielle and Ball, Steven G.}, title = {Plastidial phosphorylase is required for normal starch synthesis in Chlamydomonas reinhardtii}, series = {The plant journal}, volume = {48}, journal = {The plant journal}, number = {2}, publisher = {Blackwell}, address = {Oxford}, issn = {0960-7412}, doi = {10.1111/j.1365-313X.2006.02870.x}, pages = {274 -- 285}, year = {2006}, abstract = {Among the three distinct starch phosphorylase activities detected in Chlamydomonas reinhardtii, two distinct plastidial enzymes (PhoA and PhoB) are documented while a single extraplastidial form (PhoC) displays a higher affinity for glycogen as in vascular plants. The two plastidial phosphorylases are shown to function as homodimers containing two 91-kDa (PhoA) subunits and two 110-kDa (PhoB) subunits. Both lack the typical 80-amino-acid insertion found in the higher plant plastidial forms. PhoB is exquisitely sensitive to inhibition by ADP-glucose and has a low affinity for malto-oligosaccharides. PhoA is more similar to the higher plant plastidial phosphorylases: it is moderately sensitive to ADP-glucose inhibition and has a high affinity for unbranched malto-oligosaccharides. Molecular analysis establishes that STA4 encodes PhoB. Chlamydomonas reinhardtii strains carrying mutations at the STA4 locus display a significant decrease in amounts of starch during storage that correlates with the accumulation of abnormally shaped granules containing a modified amylopectin structure and a high amylose content. The wild-type phenotype could be rescued by reintroduction of the cloned wild-type genomic DNA, thereby demonstrating the involvement of phosphorylase in storage starch synthesis.}, language = {en} } @phdthesis{FloresCastellanos2023, author = {Flores Castellanos, Junio}, title = {Potato tuber (Solanum tuberosum L. cv Desiree) — characterization of starch interacting proteins and maltodextrin metabolism}, doi = {10.25932/publishup-61505}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-615055}, school = {Universit{\"a}t Potsdam}, pages = {XV, 69}, year = {2023}, abstract = {Starch is a biopolymer for which, despite its simple composition, understanding the precise mechanism behind its formation and regulation has been challenging. Several approaches and bioanalytical tools can be used to expand the knowledge on the different parts involved in the starch metabolism. In this sense, a comprehensive analysis targeting two of the main groups of molecules involved in this process: proteins, as effectors/regulators of the starch metabolism, and maltodextrins as starch components and degradation products, was conducted in this research work using potato plants (Solanum tuberosum L. cv. Desiree) as model of study. On one side, proteins physically interacting to potato starch were isolated and analyzed through mass spectrometry and western blot for their identification. Alternatively, starch interacting proteins were explored in potato tubers from transgenic plants having antisense inhibition of starch-related enzymes and on tubers stored under variable environmental conditions. Most of the proteins recovered from the starch granules corresponded to previously described proteins having a specific role in the starch metabolic pathway. Another set of proteins could be grouped as protease inhibitors, which were found weakly interacting to starch. Variations in the protein profile obtained after electrophoresis separation became clear when tubers were stored under different temperatures, indicating a differential expression of proteins in response to changing environmental conditions. On the other side, since maltodextrin metabolism is thought to be involved in both starch initiation and degradation, soluble maltooligosaccharide content in potato tubers was analyzed in this work under diverse experimental variables. For this, tuber disc samples from wild type and transgenic lines strongly repressing either the plastidial or cytosolic form of the -glucan phosphorylase and phosphoglucomutase were incubated with glucose, glucose-6-phosphate, and glucose-1-phosphate solutions to evaluate the influence of such enzymes on the conversion of the carbon sources into soluble maltodextrins, in comparison to wild-type samples. Relative maltodextrin amounts analyzed through capillary electrophoresis equipped with laser-induced fluorescence (CE-LIF) revealed that tuber discs could immediately uptake glucose-1-phosphate and use it to produce maltooligosaccharides with a degree of polymerization of up to 30 (DP30), in contrast to transgenic tubers with strong repression of the plastidial glucan phosphorylase. The results obtained from the maltodextrin analysis support previous indications that a specific transporter for glucose-1-phosphate may exist in both the plant cells and the plastidial membranes, thereby allowing a glucose-6-phosphate independent transport. Furthermore, it confirms that the plastidial glucan phosphorylase is responsible for producing longer maltooligosaccharides in the plastids by catalyzing a glucan polymerization reaction when glucose-1-phosphate is available. All these findings contribute to a better understanding of the role of the plastidial glucan phosphorylase as a key enzyme directly involved in the synthesis and degradation of glucans and their implication on starch metabolism.}, language = {en} } @article{BrustOrzechowskiFettke2020, author = {Brust, Henrike and Orzechowski, Slawomir and Fettke, J{\"o}rg}, title = {Starch and Glycogen Analyses}, series = {Biomolecules}, volume = {10}, journal = {Biomolecules}, number = {7}, publisher = {MDPI}, address = {Basel}, issn = {2218-273X}, doi = {10.3390/biom10071020}, pages = {24}, year = {2020}, abstract = {For complex carbohydrates, such as glycogen and starch, various analytical methods and techniques exist allowing the detailed characterization of these storage carbohydrates. In this article, we give a brief overview of the most frequently used methods, techniques, and results. Furthermore, we give insights in the isolation, purification, and fragmentation of both starch and glycogen. An overview of the different structural levels of the glucans is given and the corresponding analytical techniques are discussed. Moreover, future perspectives of the analytical needs and the challenges of the currently developing scientific questions are included}, language = {en} } @misc{BrustOrzechowskiFettke2020, author = {Brust, Henrike and Orzechowski, Slawomir and Fettke, J{\"o}rg}, title = {Starch and Glycogen Analyses}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1004}, issn = {1866-8372}, doi = {10.25932/publishup-47805}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-478054}, pages = {26}, year = {2020}, abstract = {For complex carbohydrates, such as glycogen and starch, various analytical methods and techniques exist allowing the detailed characterization of these storage carbohydrates. In this article, we give a brief overview of the most frequently used methods, techniques, and results. Furthermore, we give insights in the isolation, purification, and fragmentation of both starch and glycogen. An overview of the different structural levels of the glucans is given and the corresponding analytical techniques are discussed. Moreover, future perspectives of the analytical needs and the challenges of the currently developing scientific questions are included}, language = {en} }