@article{XuWollenbergerQianetal.2013, author = {Xu, Xuan and Wollenberger, Ursula and Qian, Jing and Lettau, Katrin and Jung, Christiane and Liu, Songqin}, title = {Electrochemically driven biocatalysis of the oxygenase domain of neuronal nitric oxide synthase in indium tin oxide nanoparticles/polyvinyl alcohol nanocomposite}, series = {Bioelectrochemistry : an international journal devoted to electrochemical aspects of biology and biological aspects of electrochemistry ; official journal of the Bioelectrochemical Society}, volume = {94}, journal = {Bioelectrochemistry : an international journal devoted to electrochemical aspects of biology and biological aspects of electrochemistry ; official journal of the Bioelectrochemical Society}, number = {47}, publisher = {Elsevier}, address = {Lausanne}, issn = {1567-5394}, doi = {10.1016/j.bioelechem.2013.04.005}, pages = {7 -- 12}, year = {2013}, abstract = {Nitric oxide synthase (NOS) plays a critical role in a number of key physiological and pathological processes. Investigation of electron-transfer reactions in NOS would contribute to a better understanding of the nitric oxide (NO) synthesis mechanism. Herein, we describe an electrochemically driven catalytic strategy, using a nanocomposite that consisted of the oxygenase domain of neuronal NOS (D290nNOSoxy), indium tin oxide (ITO) nanopartides and polyvinyl alcohol (PVA). Fast direct electron transfer between electrodes and D290nNOSoxy was observed with the heterogeneous electron transfer rate constant (k(er)) of 154.8 +/- 0.1 s(-1) at the scan rate of 5 V s(-1). Moreover, the substrate IV-hydroxy-L-arginine (NHA) was used to prove the concept of electrochemically driven biocatalysis of D290nNOSoxy. In the presence of the oxygen cosubstrate and tetrahydrobiopterin (BH4) cofactor, the addition of NHA caused the decreases of both oxidation current at + 0.1 V and reduction current at potentials ranging from -0.149 V to -0.549 V vs Ag/AgCl. Thereafter, a series of control experiments such as in the absence of BH4 or D290nNOSoxy were performed. All the results demonstrated that D290nNOSoxy biocatalysis was successfully driven by electrodes in the presence of BH4 and oxygen. This novel bioelectronic system showed potential for further investigation of NOS and biosensor applications. (C) 2013 Elsevier B.V. All rights reserved.}, language = {en} } @article{SchellerBistolasLiuetal.2005, author = {Scheller, Frieder W. and Bistolas, Nikitas and Liu, Songqin and J{\"a}nchen, Michael and Katterle, Martin and Wollenberger, Ursula}, title = {Thirty years of haemoglobin electrochemistry}, year = {2005}, abstract = {Electrochemical investigations of the blood oxygen carrier protein include both mediated and direct electron transfer. The reaction of haemoglobin (Hb) with typical mediators, e.g., ferricyanide, can be quantified by measuring the produced ferrocyanide which is equivalent to the Hb concentration. Immobilization of the mediator within the electrode body allows reagentless electrochemical measuring of Hb. On the other hand, entrapment of the protein within layers of polyclectrolytes, lipids, nanoparticles of clay or gold leads to a fast heterogeneous electron exchange of the partially denatured Hb. (c) 2005 Elsevier B.V. All rights reserved}, language = {en} } @article{LiuWollenbergerKatterleetal.2006, author = {Liu, Songqin and Wollenberger, Ursula and Katterle, Martin and Scheller, Frieder W.}, title = {Ferroceneboronic acid-based amperometric biosensor for glycated hemoglobin}, issn = {0925-4005}, doi = {10.1016/j.snb.2005.07.011}, year = {2006}, abstract = {An amperometric biosensor for the determination of glycated hemoglobin in human whole blood is proposed. The principle is based on the electrochemical measurement of ferroceneboronic acid (FcBA) that has been specifically bound to the glycated N-terminus. Hemoglobin is immobilized on a zirconium dioxide nanoparticle modified pyrolytic graphite electrode (PGE) in the presence of didodecyldimethylammonium bromide (DDAB). The incubation of this sensor in FcBA solution leads to the formation of an FcBA-modified surface due to the affinity interaction between boronate and the glycated sites of the hemoglobin. The binding of FcBA results in well-defined redox peaks with an E-0' of 0.299 V versus Ag/AgCl (1 M KCl). The square wave voltammetric response of the bound FcBA reflects the amount of glycated hemoglobin at the surface. This signal increases linearily with the degree of glycated hemoglobin from 6.8 to 14.0\% of total immobilized hemoglobin. The scheme was applied to the determination of the fraction of glycated hemoglobin in whole blood samples.}, language = {en} } @article{LiuWollenbergerHalameketal.2005, author = {Liu, Songqin and Wollenberger, Ursula and Halamek, Jan and Leupold, Eik and St{\"o}cklein, Walter F. M. and Warsinke, Axel and Scheller, Frieder W.}, title = {Affinity interaction betwen phenylboronic acid-carrying self-assembled monolayers and FAD or HRP}, year = {2005}, abstract = {A method is provided for the recognition of glycated molecules based on their binding affinities to boronate- carrying monolayers. The affinity interaction of flavin adenine dinucleotide (FAD) and horseradish peroxidase (HRP) with phenylboronic acid monolayers on gold was investigated by using voltammetric and microgravimetric methods. Conjugates of 3-aminopherrylboronic acid and 3,3'-dithiodipropionic acid di(N-hydroxysuccinimide ester) or 11-mercaptoundecanoic acid were prepared and self-assembled on gold surfaces to generate monolayers. FAD is bound to this modified sur-face and recognized by a pair of redox peaks with a formal potential of -0.433 V in a 0.1 m phosphate buffer solution, pH 6.5. Upon addition of a sugar to the buffer, the bound FAD could be replaced, indicating that the binding is reversible. Voltammetric, mass measurements, and photometric activity assays show that the HRP can also be bound to the interface. This binding is reversible, and HRP can be replaced by sorbitol or removed in acidic solution. The effects of pH, incubation time, and concentration of H2O2 were studied by comparing the catalytic reduction of H2O2 in the presence of the electron-donor thionine. The catalytic current of the HRP-loaded electrode was proportional to HRP concentrations in the incubation solution in the range between 5 mu g mL(-1) and 0.4 mg mL(-1) with a linear slope of 3.34 mu A mL mg(-1) and a correlation coefficient of 0.9945}, language = {en} } @article{JuLiuGeetal.2000, author = {Ju, Huangxian and Liu, Songqin and Ge, Bixia and Lisdat, Fred and Scheller, Frieder W.}, title = {Electrochemistry of cytochrome c immobilized on colloidal gold modified carbon paste electrodes and its electrocatalytic activity}, year = {2000}, language = {en} }