@article{GroblerHartlGrobleretal.2005, author = {Grobler, J. P. and Hartl, G. B. and Grobler, N. and Kotze, A. and Botha, K. and Tiedemann, Ralph}, title = {The genetic status of an isolated black wildebeest (Connochaetes gnou) population from the Abe Bailey Nature Reserve, South Africa : Microsatellite data on a putative past hybridization with blue wildebeest (C-taurinus)}, issn = {1616-5047}, year = {2005}, abstract = {The present study aimed at assessing genetic purity of black wildebeest (Connochoetes gnou) at Abe Bailey Nature Reserve, Gauteng Province, South Africa, using a multitocus microsatellite approach. Five loci were studied in black and blue (C. taurinus) wildebeest, the latter being a closely related species and known to produce hybrids with the morphologically very similar black wildebeest. In fact, the entire national black wildebeest population of South Africa potentially contains a significant proportion of introgressed blue wildebeest genes. In our case, eight out of 39 alleles were unique to black and 22 to blue wildebeest, with nine alleles shared between pure populations of the two species in Line with their taxonomic proximity. A possible Limited past introgression of blue wildebeest genes into the Abe Bailey population, corresponding to documents on population history, was only supported by the presence of a single allele otherwise exclusively found in samples of four pure blue but not in samples of two pure black wildebeest control populations. However, an assignment test and coefficients of population divergence did not support an extended introgression of C. taurinus alleles into the C. gnou population under study. Average heterozygosity at Abe Bailey proved to be intermediate between black and blue wildebeest, the tatter species generally harbouring more genetic variation than the former owing to larger population sizes and the absence of population bottlenecks in historical times. The implications of our data are discussed with reference to the persistence of introgressed genes and the conservation of pure black wildebeest gene pools}, language = {en} } @article{FeulnerBielfeldtZachosetal.2004, author = {Feulner, Philine g. d. and Bielfeldt, Wiebke and Zachos, F. E. and Bradvarovic, J. and Eckert, I. and Hartl, G. B.}, title = {Mitochondrial DNA and microsatellite analyses of the genetic status of the presumed subspecies Cervus elaphus montanus (Carpathian red deer)}, issn = {0018-067X}, year = {2004}, abstract = {The possibly distinct Carpathian red deer was compared genetically to other European populations. We screened 120 red deer specimens from Serbia, the Romanian lowland and the Romanian Carpathians for genetic variability using 582 bp of the mitochondrial control region and nine polymorphic nuclear microsatellite loci. The study aimed at a population genetic characterization of the Carpathian red deer, which are often treated as a distinct subspecies (Cervus elaphus montanus). The genetic integrity of the Carpathian populations was confirmed through the haplotype distribution, private alleles and genetic distances. The Carpathian red deer are thus identified as one of the few remaining natural populations of this species, deserving special attention among game and conservation biologists. The history of the populations studied, in particular the introduction of Carpathian red deer into Romanian lowland areas in the 20th century, was reflected by the genetic data}, language = {en} }