@phdthesis{Childs2010, author = {Childs, Liam H.}, title = {Bioinformatics approaches to analysing RNA mediated regulation of gene expression}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-41284}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {The genome can be considered the blueprint for an organism. Composed of DNA, it harbours all organism-specific instructions for the synthesis of all structural components and their associated functions. The role of carriers of actual molecular structure and functions was believed to be exclusively assumed by proteins encoded in particular segments of the genome, the genes. In the process of converting the information stored genes into functional proteins, RNA - a third major molecule class - was discovered early on to act a messenger by copying the genomic information and relaying it to the protein-synthesizing machinery. Furthermore, RNA molecules were identified to assist in the assembly of amino acids into native proteins. For a long time, these - rather passive - roles were thought to be the sole purpose of RNA. However, in recent years, new discoveries have led to a radical revision of this view. First, RNA molecules with catalytic functions - thought to be the exclusive domain of proteins - were discovered. Then, scientists realized that much more of the genomic sequence is transcribed into RNA molecules than there are proteins in cells begging the question what the function of all these molecules are. Furthermore, very short and altogether new types of RNA molecules seemingly playing a critical role in orchestrating cellular processes were discovered. Thus, RNA has become a central research topic in molecular biology, even to the extent that some researcher dub cells as "RNA machines". This thesis aims to contribute towards our understanding of RNA-related phenomena by applying Bioinformatics means. First, we performed a genome-wide screen to identify sites at which the chemical composition of DNA (the genotype) critically influences phenotypic traits (the phenotype) of the model plant Arabidopsis thaliana. Whole genome hybridisation arrays were used and an informatics strategy developed, to identify polymorphic sites from hybridisation to genomic DNA. Following this approach, not only were genotype-phenotype associations discovered across the entire Arabidopsis genome, but also regions not currently known to encode proteins, thus representing candidate sites for novel RNA functional molecules. By statistically associating them with phenotypic traits, clues as to their particular functions were obtained. Furthermore, these candidate regions were subjected to a novel RNA-function classification prediction method developed as part of this thesis. While determining the chemical structure (the sequence) of candidate RNA molecules is relatively straightforward, the elucidation of its structure-function relationship is much more challenging. Towards this end, we devised and implemented a novel algorithmic approach to predict the structural and, thereby, functional class of RNA molecules. In this algorithm, the concept of treating RNA molecule structures as graphs was introduced. We demonstrate that this abstraction of the actual structure leads to meaningful results that may greatly assist in the characterization of novel RNA molecules. Furthermore, by using graph-theoretic properties as descriptors of structure, we indentified particular structural features of RNA molecules that may determine their function, thus providing new insights into the structure-function relationships of RNA. The method (termed Grapple) has been made available to the scientific community as a web-based service. RNA has taken centre stage in molecular biology research and novel discoveries can be expected to further solidify the central role of RNA in the origin and support of life on earth. As illustrated by this thesis, Bioinformatics methods will continue to play an essential role in these discoveries.}, language = {en} } @misc{ChildsNikoloskiMayetal.2009, author = {Childs, Liam H. and Nikoloski, Zoran and May, Patrick and Walther, Dirk}, title = {Identification and classification of ncRNA molecules using graph properties}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-45192}, year = {2009}, abstract = {The study of non-coding RNA genes has received increased attention in recent years fuelled by accumulating evidence that larger portions of genomes than previously acknowledged are transcribed into RNA molecules of mostly unknown function, as well as the discovery of novel non-coding RNA types and functional RNA elements. Here, we demonstrate that specific properties of graphs that represent the predicted RNA secondary structure reflect functional information. We introduce a computational algorithm and an associated web-based tool (GraPPLE) for classifying non-coding RNA molecules as functional and, furthermore, into Rfam families based on their graph properties. Unlike sequence-similarity-based methods and covariance models, GraPPLE is demonstrated to be more robust with regard to increasing sequence divergence, and when combined with existing methods, leads to a significant improvement of prediction accuracy. Furthermore, graph properties identified as most informative are shown to provide an understanding as to what particular structural features render RNA molecules functional. Thus, GraPPLE may offer a valuable computational filtering tool to identify potentially interesting RNA molecules among large candidate datasets.}, language = {en} } @article{ChildsWituckaWallGuentheretal.2010, author = {Childs, Liam H. and Witucka-Wall, Hanna and Guenther, Torsten and Sulpice, Ronan and Korff, Maria V. and Stitt, Mark and Walther, Dirk and Schmid, Karl J. and Altmann, Thomas}, title = {Single feature polymorphism (SFP)-based selective sweep identification and association mapping of growth- related metabolic traits in Arabidopsis thaliana}, issn = {1471-2164}, doi = {10.1186/1471-2164-11-188}, year = {2010}, abstract = {Background: Natural accessions of Arabidopsis thaliana are characterized by a high level of phenotypic variation that can be used to investigate the extent and mode of selection on the primary metabolic traits. A collection of 54 A. thaliana natural accession-derived lines were subjected to deep genotyping through Single Feature Polymorphism (SFP) detection via genomic DNA hybridization to Arabidopsis Tiling 1.0 Arrays for the detection of selective sweeps, and identification of associations between sweep regions and growth-related metabolic traits. Results: A total of 1,072,557 high-quality SFPs were detected and indications for 3,943 deletions and 1,007 duplications were obtained. A significantly lower than expected SFP frequency was observed in protein-, rRNA-, and tRNA-coding regions and in non- repetitive intergenic regions, while pseudogenes, transposons, and non-coding RNA genes are enriched with SFPs. Gene families involved in plant defence or in signalling were identified as highly polymorphic, while several other families including transcription factors are depleted of SFPs. 198 significant associations between metabolic genes and 9 metabolic and growth-related phenotypic traits were detected with annotation hinting at the nature of the relationship. Five significant selective sweep regions were also detected of which one associated significantly with a metabolic trait. Conclusions: We generated a high density polymorphism map for 54 A. thaliana accessions that highlights the variability of resistance genes across geographic ranges and used it to identify selective sweeps and associations between metabolic genes and metabolic phenotypes. Several associations show a clear biological relationship, while many remain requiring further investigation.}, language = {en} } @article{RyngajlloChildsLohseetal.2011, author = {Ryngajllo, Malgorzata and Childs, Liam H. and Lohse, Marc and Giorgi, Federico M. and Lude, Anja and Selbig, Joachim and Usadel, Bj{\"o}rn}, title = {SLocX predicting subcellular localization of Arabidopsis proteins leveraging gene expression data}, series = {Frontiers in plant science}, volume = {2}, journal = {Frontiers in plant science}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2011.00043}, pages = {19}, year = {2011}, abstract = {Despite the growing volume of experimentally validated knowledge about the subcellular localization of plant proteins, a well performing in silico prediction tool is still a necessity. Existing tools, which employ information derived from protein sequence alone, offer limited accuracy and/or rely on full sequence availability. We explored whether gene expression profiling data can be harnessed to enhance prediction performance. To achieve this, we trained several support vector machines to predict the subcellular localization of Arabidopsis thaliana proteins using sequence derived information, expression behavior, or a combination of these data and compared their predictive performance through a cross-validation test. We show that gene expression carries information about the subcellular localization not available in sequence information, yielding dramatic benefits for plastid localization prediction, and some notable improvements for other compartments such as the mito-chondrion, the Golgi, and the plasma membrane. Based on these results, we constructed a novel subcellular localization prediction engine, SLocX, combining gene expression profiling data with protein sequence-based information. We then validated the results of this engine using an independent test set of annotated proteins and a transient expression of GFP fusion proteins. Here, we present the prediction framework and a website of predicted localizations for Arabidopsis. The relatively good accuracy of our prediction engine, even in cases where only partial protein sequence is available (e.g., in sequences lacking the N-terminal region), offers a promising opportunity for similar application to non-sequenced or poorly annotated plant species. Although the prediction scope of our method is currently limited by the availability of expression information on the ATH1 array, we believe that the advances in measuring gene expression technology will make our method applicable for all Arabidopsis proteins.}, language = {en} }