@article{Bell2007, author = {Bell, Elanor M.}, title = {Seasonal changes in the concentration and metabolic activity of bacteria and viruses at an Antarctic coastal site}, year = {2007}, abstract = {Bacteria play a key role in the world's oceans, supporting nutrient remineralisation and mediating carbon transfer. Little is known about annual changes in bacterial concentration, production and metabolism during the extreme seasonal changes in biological productivity in Antarctic waters. We measured rates of bacterial production, concentrations of viruses and bacteria and environmental parameters between February 2004 and January 2005 at an Antarctic coastal site. Concentrations of total bacteria and viruses were obtained using 4', 6-diamidino-2- phenylindole (DAPI) and SYBR Green I (Molecular Probes), respectively. Populations of bacteria in different metabolic states were estimated using vital stains. Concentrations of bacteria with intact or compromised plasma membranes were estimated using BacLight (Molecular Probes) and active cells estimated using 6-carboxyfluorescein diacetate (6CFDA). Our study showed 6CFDA and BacLight gave rapid and ecologically valuable insights into bacterial physiology, production and growth in natural Antarctic communities that were poorly represented by changes in total cell concentrations. Concentrations of total, active and intact bacteria declined rapidly at the end of summer probably owing to viral infection and microheterotrophic grazing. The decline continued over winter, likely owing to substrate limitation, and concentrations only increased after the phytoplankton bloom in spring and summer. Bacterial abundance was positively correlated with particulate organic carbon (POC) and nitrogen (PON), but not dissolved organic carbon (DOC), reflecting the refractory nature of the DOC pool. Only active and intact bacteria were significantly correlated with concentrations of chl a and rates of bacterial production. Furthermore, the obtained rates of [H-3]thymidine uptake suggest that bacterial growth rates can be sustained by the populations identified as intact or by active cells alone.}, language = {en} } @article{BellLaybournParry2003, author = {Bell, Elanor M. and Laybourn-Parry, J.}, title = {Mixotrophy in the Antarctic phytoflagellate, Pyramimonas gelidicola (Chlorophyta: Prasinophyta)}, year = {2003}, abstract = {Grazing by the planktonic, phytoflagellate, Pyramimonas gelidicola McFadden (Chlorophyta: Prasinophyta), and heterotrophic nanoflagellates (HNAN) in meromictic, saline Ace Lake in the Vestfold Hills, Eastern Antarctica, was investigated in the austral summers of 1997 and 1999. Up to 47\% of the P. gelidicola population ingested fluorescently labelled prey (FLP). Ingestion rates varied with depth. In January 1997 and November 1999, maximum P. gelidicola ingestion rates of 6.95 and 0.79 FLP;cell-1;h-1, respectively, were measured at the chemocline (6-8 m) where a deep chlorophyll maximum composed of phototrophic nanoflagellates (PNAN DCM), predominantly P. gelidicola, persisted all year. During the summers of 1997 and 1999, the grazing P. gelidicola community removed between 0.4 and approximately 16\% of in situ bacterial biomass, equivalent to between 4 and >100\% of in situ bacterial production. Due to their higher abundance, the community clearance rates of HNAN in Ace Lake generally exceeded those of P. gelidicola but HNAN removed approximately only 3 to 4\% of bacterial biomass, equivalent to between 28 and 32\% of bacterial production. P. gelidicola growth rates were highest at the PNAN DCM concomitant with the highest ingestion rates. It is estimated that during the summer P. gelidicola can derive up to 30\% of their daily carbon requirements from bacterivory at the PNAN DCM. This study confirms mixotrophy as an important strategy by which planktonic organisms can survive in extreme, polar, lacustrine ecosystems.}, language = {en} } @article{BellLaybournParry1999, author = {Bell, Elanor M. and Laybourn-Parry, J.}, title = {The plankton community of a young, eutrophic, Antarctic saline lake}, year = {1999}, abstract = {A shallow, saline lake (Rookery Lake) close to the sea and surrounded by a penguin rookery was investigated during the austral spring and summer of 1996/1997. The proximity to the sea means that the lake is likely to have been formed recently during isostatic uplift. Inputs of carbon and nutrients from the penguin rookery have rendered Rookery Lake eutrophic compared with other brackish and saline lakes in the Vestfold Hills. Chlorophyll a concentration, bacterioplankton, heterotrophic nanoflagellate and phototrophic nanoflagellate abundances were all significantly higher than in other non-enriched lakes. The high productivity created seasonal anoxia during winter and spring below ice cover. The ciliate community resembled the marine community, and was dissimilar to that seen in older saline lakes within the Vestfold Hills. Thus Rockery Lake provides valuable evidence of the impact of natural eutrophication on an Antarctic lake, as well as of the evolution of the typical microbial community which dominates the older lakes of the Vestfold Hills.}, language = {en} } @article{BellLaybournParry1999, author = {Bell, Elanor M. and Laybourn-Parry, J.}, title = {Annual plankton dynamics in an Antarctic saline lake}, year = {1999}, abstract = {1. The plankton dynamics of Ace Lake, a saline, meromictic basin in the Vestfold Hills, eastern Antarctica was studied between December 1995 and February 1997. 2. The lake supported two distinct plankton communities; an aerobic microbial community in the upper oxygenated mixolimnion and an anaerobic microbial community in the lower anoxic monimolimnion. 3. Phytoplankton development was limited by nitrogen availability. Soluble reactive phosphorus was never limiting. Chlorophyll a concentrations in the mixolimnion ranged between 0.3 and 4.4 mu g L-1 during the study period and a deep chlorophyll maximum persisted throughout the year below the chemo/oxycline. 4. Bacterioplankton abundance showed considerable seasonal variation related to light and substrate availability. Autotrophic bacterial abundance ranged between 0.02 and 8.94 x 10(8) L-1 and heterotrophic bacterial abundance between 1.26 and 72.8 x 10(8) L-1 throughout the water column. 5. The mixolimnion phytoplankton was dominated by phytoflagellates, in particular Pyramimonas gelidicola. P. gelidicola remained active for most of the year by virtue of its mixotrophic behaviour. Photosynthetic dinoflagellates occurred during the austral summer, but the entire population encysted for the winter. 6. Two communities of heterotrophic flagellates were apparent; a community living in the upper monimolimnion and a community living in the aerobic mixolimnion. Both exhibited different seasonal dynamics. 7. The ciliate community was dominated by the autotroph Mesodinium rubrum. The abundance of M. rubrum peaked in summer. A proportion of the population encysted during winter. Only one other ciliate, Euplotes sp., occurred regularly. 8. Two species of Metazoa occurred in the mixolimnion; a calanoid copepod (Paralabidocera antarctica) and a rotifer (Notholca sp.). However, there was no evidence of grazing pressure on the microbial community. In common with most other Antarctic lakes, Ace Lake appears to be driven by 'bottom-up' forces.}, language = {en} } @article{BellLockyearMcPhersonetal.2003, author = {Bell, Elanor M. and Lockyear, Jacqueline F. and McPherson, Jana M. and Marsden, A. Dale and Vincent, Amanda C. J.}, title = {First field studies of an Endangered South African seahorse, hippocampus capensis}, year = {2003}, abstract = {South Africa's endemic Knysna seahorse, Hippocampus capensis Boulenger 1900, is a rare example of a marine fish listed as Endangered by the IUCN because of its limited range and habitat vulnerability. It is restricted to four estuaries on the southern coast of South Africa. This study reports on its biology in the Knysna and Swartvlei estuaries, both of which are experiencing heavy coastal development. We found that H. capensis was distributed heterogeneously throughout the Knysna Estuary, with a mean density of 0.0089 m-2 and an estimated total population of 89 000 seahorses (95\% confidence interval: 30 000 to 148 000). H. capensis was found most frequently in low density vegetation stands ( 20\% cover) and grasping Zostera capensis. Seahorse density was not otherwise correlated with habitat type or depth. The size of the area in which any particular seahorse was resighted did not differ between males and females. Adult sex ratios were skewed in most transects, with more males than females, but were even on a 10 m by 10 m focal study grid. Only three juveniles were sighted during the study. Both sexes were reproductively active but no greeting or courtship behaviours were observed. Males on the focal study grid were longer than females, and had shorter heads and longer tails, but were similar in colouration and skin filamentation. The level of threat to H. capensis and our limited knowledge of its biology mean that further scientific study is urgently needed to assist in developing sound management practices.}, language = {en} } @article{BellParkPearceetal.2007, author = {Bell, Elanor M. and Park, Tae-Gyu and Pearce, Imojen and Rublee, Parke A. and Bolch, Christopher J. S. and Hallegraeff, Gustaff M.}, title = {Detection of a novel ecotype of Pfiesteria piscicida (Dinophyceae) in an Antarctic saline lake by real-time PCR}, year = {2007}, language = {en} } @misc{BellVincent2002, author = {Bell, Elanor M. and Vincent, Amanda C. J.}, title = {Art.: Gasterosteiform}, year = {2002}, language = {en} } @article{BellWeithoff2003, author = {Bell, Elanor M. and Weithoff, Guntram}, title = {Benthic recruitment of zooplankton in an acidic lake}, year = {2003}, abstract = {In recent years most studies of the benthic microbial food web have either been descriptive or were restricted to the measurement of within sediment process rates. Little is known about benthic-pelagic coupling processes such as recruitment. We, therefore, developed an ex situ core incubation procedure to quantify the potential for microbial recruitment from the benthos to the pelagic in an acidic mining lake, Mining Lake 111 (ML 111; pH 2.6), in eastern Germany. Our data suggest that considerable zooplankton recruitment from the benthos takes place. Heliozoan and rhizopod recruitment in both summer and winter sediment cores was highest when they were incubated at 20°C. Maximum heliozoan recruitment was 23 (± 9 s.e.) individuals cm-2 d-1 (40\% initial standing stock daily) in the winter 20°C incubation. Maximum rhizopod recruitment was 6 (± 2 s.e.) individuals cm-2 d-1 in the summer 20°C incubation. Little or no recruitment was apparent for either taxa when winter cores were incubated at 5°C, implying a temperature cue. Conversely, the rotifer, Cephalodella hoodi, exhibited a maximum recruitment of 6 (± 2 s.e.) individuals cm-2 d-1 during the winter 5°C incubation, representing 30\% of initial standing stock daily, but little recruitment when incubated at 20°C. Cephalodella may have responded to an increased winter benthic food supply; in situ winter Chl a concentrations in the benthos were 3.4 times higher than those in the summer. The importance of this was reinforced by the poor pelagic food supply available in ML 111. In situ, Heliozoa, rhizopods and Cephalodella were first observed in the epilimnion of ML 111 in spring or early summer, suggesting active or passive recruitment following lateral transport from littoral sediments. Benthic-pelagic coupling via recruitment is potentially important in understanding the pelagic food web in ML 111 and warrants further investigation in this and other aquatic environments.}, language = {en} } @article{BellWeithoffGaedke2006, author = {Bell, Elanor M. and Weithoff, Guntram and Gaedke, Ursula}, title = {Temporal dynamics and growth of Actinophrys sol (Sarcodina: Heliozoa), the top predator in an extremely acidic lake}, issn = {0046-5070}, doi = {10.1111/j.1365-2427.2006.01561.x}, year = {2006}, abstract = {1. The in situ abundance, biomass and mean cell volume of Actinophrys sol (Sarcodina: Heliozoa), the top predator in an extremely acidic German mining lake (Lake 111; pH 2.65), were determined over three consecutive years (spring to autumn, 2001-03). 2. Actinophrys sol exhibited pronounced temporal and vertical patterns in abundance, biomass and mean cell volume. Increasing from very low spring densities, maxima in abundance and biomass were observed in late June/early July and September. The highest mean abundance recorded during the study was 7 x 10(3) Heliozoa L-1. Heliozoan abundance and biomass were higher in the epilimnion than in the hypolimnion. Actinophrys sol cells from this acidic lake were smaller than individuals of the same species found in other aquatic systems. 3. We determined the growth rate of A. sol using all potential prey items available in, and isolated and cultured from, Lake 111. Prey items included: single-celled and filamentous bacteria of unknown taxonomic affinity, the mixotrophic flagellates Chlamydomonas acidophila and Ochromonas sp., the ciliate Oxytricha sp. and the rotifers Elosa worallii and Cephalodella hoodi. Actinophrys sol fed over a wide-size spectrum from bacteria to metazoans. Positive growth was not supported by all naturally available prey. Actinophrys sol neither increased in cell number (k) nor biomass (k(b)) when starved, with low concentrations of single-celled bacteria or with the alga Ochromonas sp. Positive growth was achieved with single- celled bacteria (k = 0.22 +/- 0.02 d(-1); k(b) = -0.06 +/- 0.02 d(-1)) and filamentous bacteria (k = 0.52 +/- < 0.01 d(- 1); k(b) = 0.66 d(-1)) at concentrations greater than observed in situ, and the alga C. acidophila (up to k = 0.43 +/- 0.03 d(-1); k(b) = 0.44 +/- 0.04 d(-1)), the ciliate Oxytricha sp. (k = 0.34 +/- 0.01 d(-1)) and in mixed cultures containing rotifers and C. acidophila (k = 0.23 +/- 0.02-0.32 +/- 0.02 d(-1); maximum k(b) = 0.42 +/- 0.05 d(-1)). The individual- and biomass-based growth of A. sol was highest when filamentous bacteria were provided. 4. Existing quantitative carbon flux models for the Lake 111 food web can be updated in light of our results. Actinophrys sol are omnivorous predators supported by a mixed diet of filamentous bacteria and C. acidophila in the epilimnion. Heliozoa are important components in the planktonic food webs of 'extreme' environments}, language = {en} } @article{KamjunkeGaedkeTitteletal.2004, author = {Kamjunke, Norbert and Gaedke, Ursula and Tittel, J{\"o}rg and Weithoff, Guntram and Bell, Elanor M.}, title = {Strong vertical differences in the plankton composition of an extremely acidic lake}, year = {2004}, abstract = {Vertical differences in food web structure were examined in an extremely acidic, iron-rich mining lake in Germany (Lake 111; pH 2.6, total Fe 150mg L-1) during the period of stratification. We tested whether or not the seasonal variation of the plankton composition is less pronounced than the differences observed over depth. The lake was strongly stratified in summer, and concentrations of dissolved organic carbon and inorganic carbon were consistently low in the epilimnion but high in the hypolimnion. Oxygen concentrations declined in the hypolimnion but were always above 2mg L-1. Light attenuation did not change over depth and time and was governed by dissolved ferric iron. The plankton consisted mainly of single-celled and filamentous bacteria, the two mixotrophic flagellates Chlamydomonas sp. and Ochromonas sp., the two rotifer species Elosa worallii and Cephalodella hoodi, and Heliozoa as top predators. We observed very few ciliates and rhizopods, and no heterotrophic flagellates, crustaceans or fish. Ochromonas sp., bacterial filaments, Elosa and Heliozoa dominated in the epilimnion whereas Chlamydomonas sp., single-celled bacteria and Cephalodella dominated in the hypolimnion. Single-celled bacteria were controlled by Ochromonas sp. whereas the lack of large consumers favoured a high proportion of bacterial filaments. The primarily phototrophic Chlamydomas sp. was limited by light and CO2 and may have been reduced due to grazing by Ochromonas sp. in the epilimnion. The distribution of the primarily phagotrophic Ochromonas sp. and of the animals seemed to be controlled by prey availability. Differences in the plankton composition were much higher between the epilimnion and hypolimnion than within a particular stratum over time. The food web in Lake 111 was extremely species-poor enabling no functional redundancy. This was attributed to the direct exclusion of species by the harsh environmental conditions and presumably enforced by competitive exclusion. The latter was promoted by the low diversity at the first trophic level which, in turn, was attributed to relatively stable growth conditions and the independence of resource availability (inorganic carbon and light) from algal density. Ecological theory suggests that low functional redundancy promotes low stability in ecosystem processes which was not supported by our data.}, language = {en} }