@misc{GambaJonesTeasdaleetal.2014, author = {Gamba, Cristina and Jones, Eppie R. and Teasdale, Matthew D. and McLaughlin, Russell L. and Gonz{\´a}lez-Fortes, Gloria M. and Mattiangeli, Valeria and Dombor{\´o}czki, L{\´a}szl{\´o} and Kőv{\´a}ri, Ivett and Pap, Ildik{\´o} and Anders, Alexandra and Whittle, Alasdair and Dani, J{\´a}nos and Raczky, P{\´a}l and Higham, Thomas F. G. and Hofreiter, Michael and Bradley, Daniel G. and Pinhasi, Ron}, title = {Genome flux and stasis in a five millennium transect of European prehistory}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, volume = {5}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1332}, issn = {1866-8372}, doi = {10.25932/publishup-43799}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-437999}, pages = {9}, year = {2014}, abstract = {The Great Hungarian Plain was a crossroads of cultural transformations that have shaped European prehistory. Here we analyse a 5,000-year transect of human genomes, sampled from petrous bones giving consistently excellent endogenous DNA yields, from 13 Hungarian Neolithic, Copper, Bronze and Iron Age burials including two to high (similar to 22x) and seven to similar to 1x coverage, to investigate the impact of these on Europe's genetic landscape. These data suggest genomic shifts with the advent of the Neolithic, Bronze and Iron Ages, with interleaved periods of genome stability. The earliest Neolithic context genome shows a European hunter-gatherer genetic signature and a restricted ancestral population size, suggesting direct contact between cultures after the arrival of the first farmers into Europe. The latest, Iron Age, sample reveals an eastern genomic influence concordant with introduced Steppe burial rites. We observe transition towards lighter pigmentation and surprisingly, no Neolithic presence of lactase persistence.}, language = {en} } @misc{PajoroMadrigalMuinoetal.2014, author = {Pajoro, Alice and Madrigal, Pedro and Mui{\~n}o, Jose M. and Matus, Jos{\´e} Tom{\´a}s and Jin, Jian and Mecchia, Martin A. and Debernardi, Juan M. and Palatnik, Javier F. and Balazadeh, Salma and Arif, Muhammad and {\´O}'Maoil{\´e}idigh, Diarmuid S. and Wellmer, Frank and Krajewski, Pawel and Riechmann, Jos{\´e}-Luis and Angenent, Gerco C. and Kaufmann, Kerstin}, title = {Dynamics of chromatin accessibility and gene regulation by MADS-domain transcription factors in flower development}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, volume = {15}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, issn = {1866-8372}, doi = {10.25932/publishup-43113}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-431139}, pages = {19}, year = {2014}, abstract = {Background: Development of eukaryotic organisms is controlled by transcription factors that trigger specific and global changes in gene expression programs. In plants, MADS-domain transcription factors act as master regulators of developmental switches and organ specification. However, the mechanisms by which these factors dynamically regulate the expression of their target genes at different developmental stages are still poorly understood. Results: We characterized the relationship of chromatin accessibility, gene expression, and DNA binding of two MADS-domain proteins at different stages of Arabidopsis flower development. Dynamic changes in APETALA1 and SEPALLATA3 DNA binding correlated with changes in gene expression, and many of the target genes could be associated with the developmental stage in which they are transcriptionally controlled. We also observe dynamic changes in chromatin accessibility during flower development. Remarkably, DNA binding of APETALA1 and SEPALLATA3 is largely independent of the accessibility status of their binding regions and it can precede increases in DNA accessibility. These results suggest that APETALA1 and SEPALLATA3 may modulate chromatin accessibility, thereby facilitating access of other transcriptional regulators to their target genes. Conclusions: Our findings indicate that different homeotic factors regulate partly overlapping, yet also distinctive sets of target genes in a partly stage-specific fashion. By combining the information from DNA-binding and gene expression data, we are able to propose models of stage-specific regulatory interactions, thereby addressing dynamics of regulatory networks throughout flower development. Furthermore, MADS-domain TFs may regulate gene expression by alternative strategies, one of which is modulation of chromatin accessibility.}, language = {en} } @misc{HuynenSuzukiOguraetal.2014, author = {Huynen, Leon and Suzuki, Takayuki and Ogura, Toshihiko and Watanabe, Yusuke and Millar, Craig D. and Hofreiter, Michael and Smith, Craig and Mirmoeini, Sara and Lambert, David M.}, title = {Reconstruction and in vivo analysis of the extinct tbx5 gene from ancient wingless moa (Aves: Dinornithiformes)}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1117}, issn = {1866-8372}, doi = {10.25932/publishup-43159}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-431599}, pages = {10}, year = {2014}, abstract = {Background The forelimb-specific gene tbx5 is highly conserved and essential for the development of forelimbs in zebrafish, mice, and humans. Amongst birds, a single order, Dinornithiformes, comprising the extinct wingless moa of New Zealand, are unique in having no skeletal evidence of forelimb-like structures. Results To determine the sequence of tbx5 in moa, we used a range of PCR-based techniques on ancient DNA to retrieve all nine tbx5 exons and splice sites from the giant moa, Dinornis. Moa Tbx5 is identical to chicken Tbx5 in being able to activate the downstream promotors of fgf10 and ANF. In addition we show that missexpression of moa tbx5 in the hindlimb of chicken embryos results in the formation of forelimb features, suggesting that Tbx5 was fully functional in wingless moa. An alternatively spliced exon 1 for tbx5 that is expressed specifically in the forelimb region was shown to be almost identical between moa and ostrich, suggesting that, as well as being fully functional, tbx5 is likely to have been expressed normally in moa since divergence from their flighted ancestors, approximately 60 mya. Conclusions The results suggests that, as in mice, moa tbx5 is necessary for the induction of forelimbs, but is not sufficient for their outgrowth. Moa Tbx5 may have played an important role in the development of moa's remnant forelimb girdle, and may be required for the formation of this structure. Our results further show that genetic changes affecting genes other than tbx5 must be responsible for the complete loss of forelimbs in moa.}, language = {en} } @article{BadalyanDierichStibaetal.2014, author = {Badalyan, Artavazd and Dierich, Marlen and Stiba, Konstanze and Schwuchow, Viola and Leimk{\"u}hler, Silke and Wollenberger, Ulla}, title = {Electrical wiring of the aldehyde oxidoreductase PaoABC with a polymer containing osmium redox centers}, series = {Biosensors}, volume = {4}, journal = {Biosensors}, number = {4}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/bios4040403}, pages = {403 -- 421}, year = {2014}, abstract = {Biosensors for the detection of benzaldehyde and g-aminobutyric acid (GABA) are reported using aldehyde oxidoreductase PaoABC from Escherichia coli immobilized in a polymer containing bound low potential osmium redox complexes. The electrically connected enzyme already electrooxidizes benzaldehyde at potentials below -0.15 V (vs. Ag|AgCl, 1 M KCl). The pH-dependence of benzaldehyde oxidation can be strongly influenced by the ionic strength. The effect is similar with the soluble osmium redox complex and therefore indicates a clear electrostatic effect on the bioelectrocatalytic efficiency of PaoABC in the osmium containing redox polymer. At lower ionic strength, the pH-optimum is high and can be switched to low pH-values at high ionic strength. This offers biosensing at high and low pH-values. A "reagentless" biosensor has been formed with enzyme wired onto a screen-printed electrode in a flow cell device. The response time to addition of benzaldehyde is 30 s, and the measuring range is between 10-150 µM and the detection limit of 5 µM (signal to noise ratio 3:1) of benzaldehyde. The relative standard deviation in a series (n = 13) for 200 µM benzaldehyde is 1.9\%. For the biosensor, a response to succinic semialdehyde was also identified. Based on this response and the ability to work at high pH a biosensor for GABA is proposed by coimmobilizing GABA-aminotransferase (GABA-T) and PaoABC in the osmium containing redox polymer.}, language = {en} } @misc{BadalyanDierichStibaetal.2014, author = {Badalyan, Artavazd and Dierich, Marlen and Stiba, Konstanze and Schwuchow, Viola and Leimk{\"u}hler, Silke and Wollenberger, Ulla}, title = {Electrical wiring of the aldehyde oxidoreductase PaoABC with a polymer containing osmium redox centers}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1082}, issn = {1866-8372}, doi = {10.25932/publishup-47507}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-475070}, pages = {21}, year = {2014}, abstract = {Biosensors for the detection of benzaldehyde and g-aminobutyric acid (GABA) are reported using aldehyde oxidoreductase PaoABC from Escherichia coli immobilized in a polymer containing bound low potential osmium redox complexes. The electrically connected enzyme already electrooxidizes benzaldehyde at potentials below -0.15 V (vs. Ag|AgCl, 1 M KCl). The pH-dependence of benzaldehyde oxidation can be strongly influenced by the ionic strength. The effect is similar with the soluble osmium redox complex and therefore indicates a clear electrostatic effect on the bioelectrocatalytic efficiency of PaoABC in the osmium containing redox polymer. At lower ionic strength, the pH-optimum is high and can be switched to low pH-values at high ionic strength. This offers biosensing at high and low pH-values. A "reagentless" biosensor has been formed with enzyme wired onto a screen-printed electrode in a flow cell device. The response time to addition of benzaldehyde is 30 s, and the measuring range is between 10-150 µM and the detection limit of 5 µM (signal to noise ratio 3:1) of benzaldehyde. The relative standard deviation in a series (n = 13) for 200 µM benzaldehyde is 1.9\%. For the biosensor, a response to succinic semialdehyde was also identified. Based on this response and the ability to work at high pH a biosensor for GABA is proposed by coimmobilizing GABA-aminotransferase (GABA-T) and PaoABC in the osmium containing redox polymer.}, language = {en} } @misc{YarmanScheller2014, author = {Yarman, Aysu and Scheller, Frieder W.}, title = {The first electrochemical MIP sensor for tamoxifen}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1046}, issn = {1866-8372}, doi = {10.25932/publishup-47617}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-476173}, pages = {10}, year = {2014}, abstract = {We present an electrochemical MIP sensor for tamoxifen (TAM)-a nonsteroidal anti-estrogen-which is based on the electropolymerisation of an O-phenylenediamine. resorcinol mixture directly on the electrode surface in the presence of the template molecule. Up to now only. bulk. MIPs for TAM have been described in literature, which are applied for separation in chromatography columns. Electro-polymerisation of the monomers in the presence of TAM generated a film which completely suppressed the reduction of ferricyanide. Removal of the template gave a markedly increased ferricyanide signal, which was again suppressed after rebinding as expected for filling of the cavities by target binding. The decrease of the ferricyanide peak of the MIP electrode depended linearly on the TAM concentration between 1 and 100 nM. The TAM-imprinted electrode showed a 2.3 times higher recognition of the template molecule itself as compared to its metabolite 4-hydroxytamoxifen and no cross-reactivity with the anticancer drug doxorubucin was found. Measurements at + 1.1 V caused a fouling of the electrode surface, whilst pretreatment of TAM with peroxide in presence of HRP generated an oxidation product which was reducible at 0 mV, thus circumventing the polymer formation and electrochemical interferences.}, language = {en} } @misc{SchedinaHartmannGrothetal.2014, author = {Schedina, Ina Maria and Hartmann, Stefanie and Groth, Detlef and Schlupp, Ingo and Tiedemann, Ralph}, title = {Comparative analysis of the gonadal transcriptomes of the all-female species Poecilia formosa and its maternal ancestor Poecilia mexicana}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-401420}, pages = {10}, year = {2014}, abstract = {Background The Amazon molly, Poecilia formosa (Teleostei: Poeciliinae) is an unisexual, all-female species. It evolved through the hybridisation of two closely related sexual species and exhibits clonal reproduction by sperm dependent parthenogenesis (or gynogenesis) where the sperm of a parental species is only used to activate embryogenesis of the apomictic, diploid eggs but does not contribute genetic material to the offspring. Here we provide and describe the first de novo assembled transcriptome of the Amazon molly in comparison with its maternal ancestor, the Atlantic molly Poecilia mexicana. The transcriptome data were produced through sequencing of single end libraries (100 bp) with the Illumina sequencing technique. Results 83,504,382 reads for the Amazon molly and 81,625,840 for the Atlantic molly were assembled into 127,283 and 78,961 contigs for the Amazon molly and the Atlantic molly, respectively. 63\% resp. 57\% of the contigs could be annotated with gene ontology terms after sequence similarity comparisons. Furthermore, we were able to identify genes normally involved in reproduction and especially in meiosis also in the transcriptome dataset of the apomictic reproducing Amazon molly. Conclusions We assembled and annotated the transcriptome of a non-model organism, the Amazon molly, without a reference genome (de novo). The obtained dataset is a fundamental resource for future research in functional and expression analysis. Also, the presence of 30 meiosis-specific genes within a species where no meiosis is known to take place is remarkable and raises new questions for future research.}, language = {en} } @article{ReineckeKlemmHeinken2014, author = {Reinecke, Jennifer and Klemm, Gunther and Heinken, Thilo}, title = {Vegetation change and homogenization of species composition in temperate nutrient deficient scots pine forests after 45 yr}, series = {Journal of vegetation science}, volume = {25}, journal = {Journal of vegetation science}, number = {1}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1100-9233}, doi = {10.1111/jvs.12069}, pages = {113 -- 121}, year = {2014}, abstract = {QuestionDoes eutrophication drive vegetation change in pine forests on nutrient deficient sites and thus lead to the homogenization of understorey species composition? LocationForest area (1600ha) in the Lower Spreewald, Brandenburg, Germany. MethodsResurvey of 77 semi-permanent plots after 45yr, including vascular plants, bryophytes and ground lichens. We applied multidimensional ordination of species composition, dissimilarity indices, mean Ellenberg indicator values and the concept of winner/loser species to identify vegetation change between years. Differential responses along a gradient of nutrient availability were analysed on the basis of initial vegetation type, reflecting topsoil N availability of plots. ResultsSpecies composition changed strongly and overall shifted towards higher N and slightly lower light availability. Differences in vegetation change were related to initial vegetation type, with strongest compositional changes in the oligotrophic forest type, but strongest increase of nitrophilous species in the mesotrophic forest type. Despite an overall increase in species number, species composition was homogenized between study years due to the loss of species (mainly ground lichens) on the most oligotrophic sites. ConclusionsThe response to N enrichment is confounded by canopy closure on the N-richest sites and probably by water limitation on N-poorest sites. The relative importance of atmospheric N deposition in the eutrophication effect is difficult to disentangle from natural humus accumulation after historical litter raking. However, the profound differences in species composition between study years across all forest types suggest that atmospheric N deposition contributes to the eutrophication, which drives understorey vegetation change and biotic homogenization in Central European Scots pine forests on nutrient deficient sites.}, language = {en} } @article{NicolasLecourieuxKappeletal.2014, author = {Nicolas, Philippe and Lecourieux, David and Kappel, Christian and Cluzet, Stephanie and Cramer, Grant and Delrot, Serge and Lecourieux, Fatma}, title = {The basic leucine zipper transcription factor abscisic acid responseelement-binding factor 2 is an important transcriptional regulator ofabscisic acid-dependent grape berry ripening processes}, series = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, volume = {164}, journal = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, number = {1}, publisher = {American Society of Plant Physiologists}, address = {Rockville}, issn = {0032-0889}, doi = {10.1104/pp.113.231977}, pages = {365 -- 383}, year = {2014}, abstract = {In grape (Vitis vinifera), abscisic acid (ABA) accumulates during fruit ripening and is thought to play a pivotal role in this process, but the molecular basis of this control is poorly understood. This work characterizes ABSCISIC ACID RESPONSE ELEMENT-BINDING FACTOR2 (VvABF2), a grape basic leucine zipper transcription factor belonging to a phylogenetic subgroup previously shown to be involved in ABA and abiotic stress signaling in other plant species. VvABF2 transcripts mainly accumulated in the berry, from the onset of ripening to the harvesting stage, and were up-regulated by ABA. Microarray analysis of transgenic grape cells overexpressing VvABF2 showed that this transcription factor up-regulates and/or modifies existing networks related to ABA responses. In addition, grape cells overexpressing VvABF2 exhibited enhanced responses to ABA treatment compared with control cells. Among the VvABF2-mediated responses highlighted in this study, the synthesis of phenolic compounds and cell wall softening were the most strongly affected. VvABF2 overexpression strongly increased the accumulation of stilbenes that play a role in plant defense and human health (resveratrol and piceid). In addition, the firmness of fruits from tomato (Solanum lycopersicum) plants overexpressing VvABF2 was strongly reduced. These data indicate that VvABF2 is an important transcriptional regulator of ABA-dependent grape berry ripening.}, language = {en} } @misc{CencilNitschkeSteupetal.2014, author = {Cencil, Ugo and Nitschke, Felix and Steup, Martin and Minassian, Berge A. and Colleoni, Christophe and Ball, Steven G.}, title = {Transition from glycogen to starch metabolism in Archaeplastida}, series = {Trends in plant science}, volume = {19}, journal = {Trends in plant science}, number = {1}, publisher = {Elsevier}, address = {London}, issn = {1360-1385}, doi = {10.1016/j.tplants.2013.08.004}, pages = {18 -- 28}, year = {2014}, abstract = {In this opinion article we propose a scenario detailing how two crucial components have evolved simultaneously to ensure the transition of glycogen to starch in the cytosol of the Archaeplastida last common ancestor: (i) the recruitment of an enzyme from intracellular Chlamydiae pathogens to facilitate crystallization of alpha-glucan chains; and (ii) the evolution of novel types of polysaccharide (de)phosphorylating enzymes from preexisting glycogen (de)phosphorylation host pathways to allow the turnover of such crystals. We speculate that the transition to starch benefitted Archaeplastida in three ways: more carbon could be packed into osmotically inert material; the host could resume control of carbon assimilation from the chlamydial pathogen that triggered plastid endosymbiosis; and cyanobacterial photosynthate export could be integrated in the emerging Archaeplastida.}, language = {en} }