@phdthesis{FuentesTaladriz2015, author = {Fuentes Taladriz, Paulina Andrea}, title = {High-level production of the antimalarial drug precursor artemisinic acid in plastids and in vivo visualization of plastid-to-nucleus gene transfer}, school = {Universit{\"a}t Potsdam}, pages = {148}, year = {2015}, language = {en} } @phdthesis{Kamranfar2015, author = {Kamranfar, Iman}, title = {Functional analysis of gene regulatory networks controlled by stress responsive transcription factors in Arabidopsis thaliana}, school = {Universit{\"a}t Potsdam}, pages = {151}, year = {2015}, language = {en} } @phdthesis{Sakschewski2015, author = {Sakschewski, Boris}, title = {Impacts of major anthropogenic pressures on the terrestrial biosphere and its resilience to global change}, school = {Universit{\"a}t Potsdam}, pages = {159}, year = {2015}, language = {en} } @phdthesis{Laemke2015, author = {L{\"a}mke, J{\"o}rn}, title = {Determining the future in the past}, school = {Universit{\"a}t Potsdam}, pages = {149}, year = {2015}, language = {en} } @phdthesis{Paijmans2015, author = {Paijmans, Johanna L. A.}, title = {Application of hybridisation capture to investigate complete mitogenomes from ancient samples}, school = {Universit{\"a}t Potsdam}, pages = {207}, year = {2015}, language = {en} } @phdthesis{Liebrich2015, author = {Liebrich, Marietta}, title = {Einfluss von Prozessoptimierungen auf die mikrobielle Diversit{\"a}t und die Effizienz der Gasbildung in Co-Verg{\"a}rungsanlagen der Abfallwirtschaft}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-91066}, school = {Universit{\"a}t Potsdam}, pages = {VII, 102}, year = {2015}, abstract = {Im Hinblick auf die Problematik der Umweltverschmutzung durch die Nutzung fossiler Brennstoffe ist es n{\"o}tig, eine langfristig stabile und umweltfreundliche Energieversorgung zu gew{\"a}hrleisten. Eine M{\"o}glichkeit, den Energiebedarf CO2-neutral zu decken, ist die Nutzung von Biogas. Hierbei spielt der Einsatz von biogenen Reststoffen, die durch einen hohen Anteil an Kohlenhydraten, Fetten und Proteinen gekennzeichnet sind und daher ein hohes Biogaspotential besitzen, eine wichtige Rolle. Voraussetzung f{\"u}r die Effizienz und Rentabilit{\"a}t solcher Anlagen ist u. a. ein stabiler Gasbildungsprozess. Da bisher noch nicht alle Aspekte der Biogasbildung vollst{\"a}ndig verstanden sind, werden die Anlagen oft nicht optimal ausgelastet, um Prozessst{\"o}rungen wie z. B. {\"U}bers{\"a}uerung zu vermeiden. Um dennoch auftretende Prozessst{\"o}rungen zu beheben, k{\"o}nnen unterschiedliche Maßnahmen durchgef{\"u}hrt werden. Neben der Senkung der Raumbelastung, ist es m{\"o}glich, den pH-Wert durch die Zugabe von Natronlauge oder Calciumoxid anzuheben. In der vorliegenden Arbeit wurden sowohl Prozessst{\"o}rungen als auch Prozessregenerierungen an einer großtechnischen Biogasanlage und in Laborversuchen untersucht. Dabei galt es, neben den physikalischen und chemischen Parametern, die mikrobielle Bioz{\"o}nose mit Hilfe des genetischen Fingerprintings zu charakterisieren und {\"A}nderungen zu detektieren. W{\"a}hrend der Prozessregenerierungen wurden nach der Zugabe von CaO Ver{\"a}nderungen des G{\"a}rrestes beobachtet. Es bildeten sich Pellets, die im Hinblick auf ihre Funktion f{\"u}r die Prozessregenerierung und die Prozessstabilit{\"a}t molekularbiologisch und mikroskopisch untersucht wurden. Es wurde weiterhin der Frage nachgegangen, welche Rolle die Mikroorganismen bei der Entstehung der Pellets spielen. Die vor allem aus Calcium und Fetts{\"a}uren bestehenden Pellets dienten als Aufwuchsfl{\"a}chen f{\"u}r verschiedene Mikroorganismen. Die Bildung von Biofilmen, wie sie auf und in den Pellets nachgewiesen wurde, bot f{\"u}r Mikroorganismen einen Schutz vor negativen Umwelteinfl{\"u}ssen wie z. B. hohe Propions{\"a}urekonzentrationen. Unter diesen g{\"u}nstigen Bedingungen war die Bildung von Biogas auch unter hohen Wasserstoffpartialdr{\"u}cken, die den Abbau von Propions{\"a}ure hemmten, m{\"o}glich. Als Indikator f{\"u}r bessere Lebensbedingungen wurde im Laborversuch ein Methanoculleus receptaculi-verwandter Organismus identifiziert. Dieses methanogene Archaeon wurde im Pellet nachgewiesen, w{\"a}hrend es im G{\"a}rrest erst nach der Prozessregenerierung detektiert wurde. Der Nachweis eines im Vergleich zum umgebenden G{\"a}rrest h{\"o}heren Anteils an Archaeen im Kern der Pellets sowie von Biofilmen/EPS, verschiedenen Phosphatsalzen und schwerl{\"o}slichen Calciumsalzen zeigte, dass sowohl Pr{\"a}zipitation und Adsorption als auch Degradation von LCFA dazu f{\"u}hren, dass deren Konzentration im fl{\"u}ssigen G{\"a}rrest gesenkt wird. Dadurch nimmt die Hemmung auf die Bioz{\"o}nose ab und die Biogasbildungsrate steigt. Daher ist der Abbau der Fetts{\"a}uren auch bei einem niedrigen pH-Wert und unter hohen Wasserstoffpartialdr{\"u}cken m{\"o}glich und der Biogasbildungsprozess ist langfristig stabil. Die Bildung von Pellets unterst{\"u}tzt die Prozessstabilit{\"a}t, sofern diese nicht zu groß werden und dann u. a. die Durchmischung behindern und den Ablauf verstopfen. Nach erfolgreicher Prozessstabilisierung wurden keine Pellets im G{\"a}rrest beobachtet. Der Abbau des organischen Materials wurde sowohl durch die steigende Calciumkonzentration als auch die steigende Gasproduktion angezeigt.}, language = {de} } @phdthesis{Balk2015, author = {Balk, Maria}, title = {3D structured shape-memory hydrogels with enzymatically-induced shape shifting}, school = {Universit{\"a}t Potsdam}, pages = {128}, year = {2015}, language = {en} } @phdthesis{Apelt2015, author = {Apelt, Federico}, title = {Implementation of an imaging-based approach using a 3D light-field camera to analyse plant growth behaviour}, school = {Universit{\"a}t Potsdam}, pages = {227}, year = {2015}, language = {en} } @phdthesis{Ploetner2015, author = {Pl{\"o}tner, Bj{\"o}rn}, title = {F2 hybrid chlorosis in a cross between the Arabidopsis thaliana accessions Shahdara and Lovvik-5}, school = {Universit{\"a}t Potsdam}, pages = {99}, year = {2015}, language = {en} } @phdthesis{Olszewska2015, author = {Olszewska, Agata}, title = {Forming magnetic chain with the help of biological organisms}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-89767}, school = {Universit{\"a}t Potsdam}, pages = {101}, year = {2015}, abstract = {Magnetite nanoparticles and their assembly comprise a new area of development for new technologies. The magnetic particles can interact and assemble in chains or networks. Magnetotactic bacteria are one of the most interesting microorganisms, in which the assembly of nanoparticles occurs. These microorganisms are a heterogeneous group of gram negative prokaryotes, which all show the production of special magnetic organelles called magnetosomes, consisting of a magnetic nanoparticle, either magnetite (Fe3O4) or greigite (Fe3S4), embedded in a membrane. The chain is assembled along an actin-like scaffold made of MamK protein, which makes the magnetosomes to arrange in mechanically stable chains. The chains work as a compass needle in order to allow cells to orient and swim along the magnetic field of the Earth. The formation of magnetosomes is known to be controlled at the molecular level. The physico-chemical conditions of the surrounding environment also influence biomineralization. The work presented in this manuscript aims to understand how such external conditions, in particular the extracellular oxidation reduction potential (ORP) influence magnetite formation in the strain Magnetospirillum magneticum AMB-1. A controlled cultivation of the microorganism was developed in a bioreactor and the formation of magnetosomes was characterized. Different techniques have been applied in order to characterize the amount of iron taken up by the bacteria and in consequence the size of magnetosomes produced at different ORP conditions. By comparison of iron uptake, morphology of bacteria, size and amount of magnetosomes per cell at different ORP, the formation of magnetosomes was inhibited at ORP 0 mV, whereas reduced conditions, ORP - 500 mV facilitate biomineralization process. Self-assembly of magnetosomes occurring in magnetotactic bacteria became an inspiration to learn from nature and to construct nanoparticles assemblies by using the bacteriophage M13 as a template. The M13 bacteriophage is an 800 nm long filament with encapsulated single-stranded DNA that has been recently used as a scaffold for nanoparticle assembly. I constructed two types of assemblies based on bacteriophages and magnetic nanoparticles. A chain - like assembly was first formed where magnetite nanoparticles are attached along the phage filament. A sperm - like construct was also built with a magnetic head and a tail formed by phage filament. The controlled assembly of magnetite nanoparticles on the phage template was possible due to two different mechanism of nanoparticle assembly. The first one was based on the electrostatic interactions between positively charged polyethylenimine coated magnetite nanoparticles and negatively charged phages. The second phage -nanoparticle assembly was achieved by bioengineered recognition sites. A mCherry protein is displayed on the phage and is was used as a linker to a red binding nanobody (RBP) that is fused to the one of the proteins surrounding the magnetite crystal of a magnetosome. Both assemblies were actuated in water by an external magnetic field showing their swimming behavior and potentially enabling further usage of such structures for medical applications. The speed of the phage - nanoparticles assemblies are relatively slow when compared to those of microswimmers previously published. However, only the largest phage-magnetite assemblies could be imaged and it is therefore still unclear how fast these structures can be in their smaller version.}, language = {en} }