@phdthesis{Kamann2013, author = {Kamann, Sebastian}, title = {Crowded field spectroscopy and the search for intermediate-mass black holes in globular clusters}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-67763}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Globular clusters are dense and massive star clusters that are an integral part of any major galaxy. Careful studies of their stars, a single cluster may contain several millions of them, have revealed that the ages of many globular clusters are comparable to the age of the Universe. These remarkable ages make them valuable probes for the exploration of structure formation in the early universe or the assembly of our own galaxy, the Milky Way. A topic of current research relates to the question whether globular clusters harbour massive black holes in their centres. These black holes would bridge the gap from stellar mass black holes, that represent the final stage in the evolution of massive stars, to supermassive ones that reside in the centres of galaxies. For this reason, they are referred to as intermediate-mass black holes. The most reliable method to detect and to weigh a black hole is to study the motion of stars inside its sphere of influence. The measurement of Doppler shifts via spectroscopy allows one to carry out such dynamical studies. However, spectroscopic observations in dense stellar fields such as Galactic globular clusters are challenging. As a consequence of diffraction processes in the atmosphere and the finite resolution of a telescope, observed stars have a finite width characterized by the point spread function (PSF), hence they appear blended in crowded stellar fields. Classical spectroscopy does not preserve any spatial information, therefore it is impossible to separate the spectra of blended stars and to measure their velocities. Yet methods have been developed to perform imaging spectroscopy. One of those methods is integral field spectroscopy. In the course of this work, the first systematic study on the potential of integral field spectroscopy in the analysis of dense stellar fields is carried out. To this aim, a method is developed to reconstruct the PSF from the observed data and to use this information to extract the stellar spectra. Based on dedicated simulations, predictions are made on the number of stellar spectra that can be extracted from a given data set and the quality of those spectra. Furthermore, the influence of uncertainties in the recovered PSF on the extracted spectra are quantified. The results clearly show that compared to traditional approaches, this method makes a significantly larger number of stars accessible to a spectroscopic analysis. This systematic study goes hand in hand with the development of a software package to automatize the individual steps of the data analysis. It is applied to data of three Galactic globular clusters, M3, M13, and M92. The data have been observed with the PMAS integral field spectrograph at the Calar Alto observatory with the aim to constrain the presence of intermediate-mass black holes in the centres of the clusters. The application of the new analysis method yields samples of about 80 stars per cluster. These are by far the largest spectroscopic samples that have so far been obtained in the centre of any of the three clusters. In the course of the further analysis, Jeans models are calculated for each cluster that predict the velocity dispersion based on an assumed mass distribution inside the cluster. The comparison to the observed velocities of the stars shows that in none of the three clusters, a massive black hole is required to explain the observed kinematics. Instead, the observations rule out any black hole in M13 with a mass higher than 13000 solar masses at the 99.7\% level. For the other two clusters, this limit is at significantly lower masses, namely 2500 solar masses in M3 and 2000 solar masses in M92. In M92, it is possible to lower this limit even further by a combined analysis of the extracted stars and the unresolved stellar component. This component consists of the numerous stars in the cluster that appear unresolved in the integral field data. The final limit of 1300 solar masses is the lowest limit obtained so far for a massive globular cluster.}, language = {en} } @phdthesis{Wechakama2013, author = {Wechakama, Maneenate}, title = {Multi-messenger constraints and pressure from dark matter annihilation into electron-positron pairs}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-67401}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Despite striking evidence for the existence of dark matter from astrophysical observations, dark matter has still escaped any direct or indirect detection until today. Therefore a proof for its existence and the revelation of its nature belongs to one of the most intriguing challenges of nowadays cosmology and particle physics. The present work tries to investigate the nature of dark matter through indirect signatures from dark matter annihilation into electron-positron pairs in two different ways, pressure from dark matter annihilation and multi-messenger constraints on the dark matter annihilation cross-section. We focus on dark matter annihilation into electron-positron pairs and adopt a model-independent approach, where all the electrons and positrons are injected with the same initial energy E_0 ~ m_dm*c^2. The propagation of these particles is determined by solving the diffusion-loss equation, considering inverse Compton scattering, synchrotron radiation, Coulomb collisions, bremsstrahlung, and ionization. The first part of this work, focusing on pressure from dark matter annihilation, demonstrates that dark matter annihilation into electron-positron pairs may affect the observed rotation curve by a significant amount. The injection rate of this calculation is constrained by INTEGRAL, Fermi, and H.E.S.S. data. The pressure of the relativistic electron-positron gas is computed from the energy spectrum predicted by the diffusion-loss equation. For values of the gas density and magnetic field that are representative of the Milky Way, it is estimated that the pressure gradients are strong enough to balance gravity in the central parts if E_0 < 1 GeV. The exact value depends somewhat on the astrophysical parameters, and it changes dramatically with the slope of the dark matter density profile. For very steep slopes, as those expected from adiabatic contraction, the rotation curves of spiral galaxies would be affected on kiloparsec scales for most values of E_0. By comparing the predicted rotation curves with observations of dwarf and low surface brightness galaxies, we show that the pressure from dark matter annihilation may improve the agreement between theory and observations in some cases, but it also imposes severe constraints on the model parameters (most notably, the inner slope of the halo density profile, as well as the mass and the annihilation cross-section of dark matter particles into electron-positron pairs). In the second part, upper limits on the dark matter annihilation cross-section into electron-positron pairs are obtained by combining observed data at different wavelengths (from Haslam, WMAP, and Fermi all-sky intensity maps) with recent measurements of the electron and positron spectra in the solar neighbourhood by PAMELA, Fermi, and H.E.S.S.. We consider synchrotron emission in the radio and microwave bands, as well as inverse Compton scattering and final-state radiation at gamma-ray energies. For most values of the model parameters, the tightest constraints are imposed by the local positron spectrum and synchrotron emission from the central regions of the Galaxy. According to our results, the annihilation cross-section should not be higher than the canonical value for a thermal relic if the mass of the dark matter candidate is smaller than a few GeV. In addition, we also derive a stringent upper limit on the inner logarithmic slope α of the density profile of the Milky Way dark matter halo (α < 1 if m_dm < 5 GeV, α < 1.3 if m_dm < 100 GeV and α < 1.5 if m_dm < 2 TeV) assuming a dark matter annihilation cross-section into electron-positron pairs (σv) = 3*10^-26 cm^3 s^-1, as predicted for thermal relics from the big bang.}, language = {en} } @phdthesis{Garz2013, author = {Garz, Andreas}, title = {Nichtlineare Mikroskopie und Bilddatenverarbeitung zur biochemischen Analyse synchronisierter Chlamydomonas-Zellen}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-66904}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Unter geeigneten Wachstumsbedingungen weisen Algenkulturen oft eine gr{\"o}ßere Produktivit{\"a}t der Zellen auf, als sie bei h{\"o}heren Pflanzen zu beobachten ist. Chlamydomonas reinhardtii-Zellen sind vergleichsweise klein. So betr{\"a}gt das Zellvolumen w{\"a}hrend des vegetativen Zellzyklus etwa 50-3500 µm³. Im Vergleich zu h{\"o}heren Pflanzen ist in einer Algensuspension die Konzentration der Biomasse allerdings gering. So enth{\"a}lt beispielsweise 1 ml einer {\"u}blichen Konzentration zwischen 10E6 und 10E7 Algenzellen. Quantifizierungen von Metaboliten oder Makromolek{\"u}len, die zur Modellierung von zellul{\"a}ren Prozessen genutzt werden, werden meist im Zellensemble vorgenommen. Tats{\"a}chlich unterliegt jedoch jede Algenzelle einer individuellen Entwicklung, die die Identifizierung charakteristischer allgemeing{\"u}ltiger Systemparameter erschwert. Ziel dieser Arbeit war es, biochemisch relevante Messgr{\"o}ßen in-vivo und in-vitro mit Hilfe optischer Verfahren zu identifizieren und zu quantifizieren. Im ersten Teil der Arbeit wurde ein Puls-Amplituden-Modulation(PAM)-Fluorimetriemessplatz zur Messung der durch {\"a}ußere Einfl{\"u}sse bedingten ver{\"a}nderlichen Chlorophyllfluoreszenz an einzelnen Zellen vorgestellt. Die Verwendung eines kommerziellen Mikroskops, die Implementierung empfindlicher Nachweiselektronik und einer geeignete Immobilisierungsmethode erm{\"o}glichten es, ein Signal-zu-Rauschverh{\"a}ltnis zu erreichen, mit dem Fluoreszenzsignale einzelner lebender Chlamydomonas-Zellen gemessen werden konnten. Insbesondere wurden das Zellvolumen und der als Maß f{\"u}r die Effizienz des Photosyntheseapparats bzw. die Zellfitness geltende Chlorophyllfluoreszenzparameter Fv/Fm ermittelt und ein hohes Maß an Heterogenit{\"a}t dieser zellul{\"a}ren Parameter in verschiedenen Entwicklungsstadien der synchronisierten Chlamydomonas-Zellen festgestellt. Im zweiten Teil der Arbeit wurden die bildgebende Laser-Scanning-Mikroskopie und anschließende Bilddatenanalyse zur quantitativen Erfassung der wachstumsabh{\"a}ngigen zellul{\"a}ren Parameter angewandt. Ein kommerzielles konfokales Mikroskop wurde um die M{\"o}glichkeit der nichtlinearen Mikroskopie erweitert. Diese hat den Vorteil einer lokalisierten Anregung, damit verbunden einer h{\"o}heren Ortsaufl{\"o}sung und insgesamt geringeren Probenbelastung. Weiterhin besteht neben der Signalgewinnung durch Fluoreszenzanregung die M{\"o}glichkeit der Erzeugung der Zweiten Harmonischen (SHG) an biophotonischen Strukturen, wie der zellul{\"a}ren St{\"a}rke. Anhand der Verteilungsfunktionen war es m{\"o}glich mit Hilfe von modelltheoretischen Ans{\"a}tzen zellul{\"a}re Parameter zu ermitteln, die messtechnisch nicht unmittelbar zug{\"a}nglich sind. Die morphologischen Informationen der Bilddaten erm{\"o}glichten die Bestimmung der Zellvolumina und die Volumina subzellularer Strukturen, wie Nuclei, extranucle{\"a}re DNA oder St{\"a}rkegranula. Weiterhin konnte die Anzahl subzellul{\"a}rer Strukturen innerhalb einer Zelle bzw. eines Zellverbunds ermittelt werden. Die Analyse der in den Bilddaten enthaltenen Signalintensit{\"a}ten war Grundlage einer relativen Konzentrationsbestimmung von zellul{\"a}ren Komponenten, wie DNA bzw. St{\"a}rke. Mit dem hier vorgestellten Verfahren der nichtlinearen Mikroskopie und nachfolgender Bilddatenanalyse konnte erstmalig die Verteilung des zellul{\"a}ren St{\"a}rkegehalts in einer Chlamydomonas-Population w{\"a}hrend des Wachstums bzw. nach induziertem St{\"a}rkeabbau verfolgt werden. Im weiteren Verlauf wurde diese Methode auch auf Gefrierschnitte h{\"o}herer Pflanzen, wie Arabidopsis thaliana, angewendet. Im Ergebnis wurde gezeigt, dass viele zellul{\"a}re Parameter, wie das Volumen, der zellul{\"a}re DNA- und St{\"a}rkegehalt bzw. die Anzahl der St{\"a}rkegranula durch eine Lognormalverteilung, mit wachstumsabh{\"a}ngiger Parametrisierung, beschrieben werden. Zellul{\"a}re Parameter, wie Stoffkonzentration und zellul{\"a}res Volumen, zeigen keine signifikanten Korrelationen zueinander, woraus geschlussfolgert werden muss, dass es ein hohes Maß an Heterogenit{\"a}t der zellul{\"a}ren Parameter innerhalb der synchronisierten Chlamydomonas-Populationen gibt. Diese Aussage gilt sowohl f{\"u}r die als homogenste Form geltenden Synchronkulturen von Chlamydomonas reinhardtii als auch f{\"u}r die gemessenen zellul{\"a}ren Parameter im intakten Zellverbund h{\"o}herer Pflanzen. Dieses Ergebnis ist insbesondere f{\"u}r modelltheoretische Betrachtungen von Relevanz, die sich auf empirische Daten bzw. zellul{\"a}re Parameter st{\"u}tzen welche im Zellensemble gemessen wurden und somit nicht notwendigerweise den zellul{\"a}ren Status einer einzelnen Zelle repr{\"a}sentieren.}, language = {de} } @phdthesis{Raetzel2013, author = {R{\"a}tzel, Dennis}, title = {Tensorial spacetime geometries and background-independent quantum field theory}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-65731}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Famously, Einstein read off the geometry of spacetime from Maxwell's equations. Today, we take this geometry that serious that our fundamental theory of matter, the standard model of particle physics, is based on it. However, it seems that there is a gap in our understanding if it comes to the physics outside of the solar system. Independent surveys show that we need concepts like dark matter and dark energy to make our models fit with the observations. But these concepts do not fit in the standard model of particle physics. To overcome this problem, at least, we have to be open to matter fields with kinematics and dynamics beyond the standard model. But these matter fields might then very well correspond to different spacetime geometries. This is the basis of this thesis: it studies the underlying spacetime geometries and ventures into the quantization of those matter fields independently of any background geometry. In the first part of this thesis, conditions are identified that a general tensorial geometry must fulfill to serve as a viable spacetime structure. Kinematics of massless and massive point particles on such geometries are introduced and the physical implications are investigated. Additionally, field equations for massive matter fields are constructed like for example a modified Dirac equation. In the second part, a background independent formulation of quantum field theory, the general boundary formulation, is reviewed. The general boundary formulation is then applied to the Unruh effect as a testing ground and first attempts are made to quantize massive matter fields on tensorial spacetimes.}, language = {en} } @phdthesis{Dubinovska2013, author = {Dubinovska, Daria}, title = {Optical surveys of AGN and their host galaxies}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-64739}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {This thesis rests on two large Active Galactic Nuclei (AGNs) surveys. The first survey deals with galaxies that host low-level AGNs (LLAGN) and aims at identifying such galaxies by quantifying their variability. While numerous studies have shown that AGNs can be variable at all wavelengths, the nature of the variability is still not well understood. Studying the properties of LLAGNs may help to understand better galaxy evolution, and how AGNs transit between active and inactive states. In this thesis, we develop a method to extract variability properties of AGNs. Using multi-epoch deep photometric observations, we subtract the contribution of the host galaxy at each epoch to extract variability and estimate AGN accretion rates. This pipeline will be a powerful tool in connection with future deep surveys such as PANSTARS. The second study in this thesis describes a survey of X-ray selected AGN hosts at redshifts z>1.5 and compares them to quiescent galaxies. This survey aims at studying environments, sizes and morphologies of star-forming high-redshift AGN hosts in the COSMOS Survey at the epoch of peak AGN activity. Between redshifts 1.51.5 to date. We analyzed the evolution of structural parameters of AGN and non-AGN host galaxies with redshift, and compared their disturbance rates to identify the more probable AGN triggering mechanism in the 43.5