@article{BrumaSavaMerceretal.1998, author = {Bruma, Maria and Sava, Ion and Mercer, Frank W. and Reddy, Victor N. and K{\"o}pnick, Thomas and Stiller, Burkhard and Schulz, Burkhard}, title = {Silicon-containing poly(amide-ether)s}, year = {1998}, abstract = {New aromatic poly(amide-ether)s (II) have been synthesized by solution polycondensation of various aromatic diamines having two ether bridges (I) with a diacid chloride containing silicon, namely bis(chlorocarbonylphenyl)- diphenyIsilane. These polymers are easy soluble in polar amidic solvents such as N-methylpyrrolidinone or dimethylformamide and can be cast into thin flexible films or coatings from such solutions. They show high thermal stability with initial decomposition temperature being above 400 °C. Their glass transition temperatures lie in the range of 220-250 °C, except for polymer He which did not show a clear Tg when heated in a differential scanning calorimetry experiment up to 300 °C. The large interval between the glass transition and decomposition temperatures of pnlymers Ia-Id could be advantageous for their processing via compression molding. The polymer coatings deposited by the spincoating, technique onto silicon wafers showed a very smooth, pinhole-free surface in atomic force microscopy investigations. The free-standing films of 20-30 mm thickness show low dielectric constant, in the range of 3.65-3.78, which is promising for future application as high performance dielectrics.}, language = {en} } @article{BrumaSchulzKoepnicketal.1998, author = {Bruma, Maria and Schulz, Burkhard and K{\"o}pnick, Thomas and Dietel, Reinhard and Stiller, Burkhard and Mercer, Frank W.}, title = {Investigation of thin films made from silicon-containing poly(phenylquinoxaline-amide)s}, year = {1998}, abstract = {Thin films in the range of 50 nm to 10 mm thickness have been prepared from NMP solutions of silicon-containing polyphenylquinoxaline-amides which had been synthesized by the polycondensation reaction of aromatic diaminophenylquinoxalines with bis(p-chlorocarbonylphenyl)diphenylsilane. A spin-coating technique onto glass plates or onto silicon wafers was used to make the film, followed by gradual heating to remove the solvent. The resulting films were very smooth and free of pinholes when studied by atomic force microscopy (AFM). They showed a strong adhesion to silicon wafers, were thermally stable in air to above 400 °C and their dielectric constant was in the range of 3.5-3.7. Thermal treatment of the films was performed in order to induce crosslinking. Such treated films became completely insoluble in organic solvents, maintained their smoothness and strong adhesion to the silicon substrate, and did not show any Tg, in DSC experiments. Their FTIR spectra in reflection mode did not show any changes compared with the untreated films, meaning on the one hand that the polymers maintain their structural integrity at high temperature and on the other hand that the number of crosslinks was very low and could not be detected by IR spectroscopy.}, language = {en} } @article{BrumaSchulzKoepnicketal.1998, author = {Bruma, Maria and Schulz, Burkhard and K{\"o}pnick, Thomas and Stiller, Burkhard and Hamciuc, Elena and Mercer, Frank W. and Cassidy, Peter}, title = {Aromatic polyamides with hexafluoroisopropylidene groups and study of the thin}, year = {1998}, language = {en} }