@phdthesis{Goethel2023, author = {G{\"o}thel, Markus}, title = {Entwicklung eines Verfahrens zur Generierung von spezifischen monoklonalen Antik{\"o}rpern gegen Mikroorganismen basierend auf in silico Epitopanalysen}, doi = {10.25932/publishup-58801}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-588017}, school = {Universit{\"a}t Potsdam}, pages = {XVI, 113}, year = {2023}, abstract = {Monoklonale Antik{\"o}rper (mAK) sind eines der wichtigsten Biomolek{\"u}le f{\"u}r die Umweltanalytik und die medizinische Diagnostik. F{\"u}r die Detektion von Mikroorganismen bilden sie die Grundlage f{\"u}r ein schnelles und pr{\"a}zises Testverfahren. Bis heute gibt es, aufgrund des hohen zeitlichen und materiellen Aufwandes und der unspezifischen Immunisierungsstrategien, nur wenige mAK, die spezifisch Mikroorganismen erkennen. Zu diesem Zweck sollte ein anwendbares Verfahren f{\"u}r die Generierung von mAK gegen Mikroorganismen entwickelt werden, welches anhand von Escherichia coli O157:H7 und Legionella pneumophila validiert wurde. In dieser Dissertation konnten neue Oberfl{\"a}chenstrukturen auf den Mikroorganismen mittels vergleichender Genomanalysen und in silico Epitopanalysen identifiziert werden. Diese wurden in das Virush{\"u}llprotein VP1 integriert und f{\"u}r eine gezielte Immunisierungsstrategie verwendet. F{\"u}r die Bestimmung antigenspezifischer antik{\"o}rperproduzierender Hybridome wurde ein Immunf{\"a}rbeprotokoll entwickelt und etabliert, um die Hybridome im Durchflusszytometer zu sortieren. In der vorliegenden Studie konnten f{\"u}r E. coli O157:H7 insgesamt 53 potenzielle Proteinkandidaten und f{\"u}r L. pneumophila 38 Proteine mithilfe der bioinformatischen Analyse identifiziert werden. F{\"u}nf verschiedene potenzielle Epitope wurden f{\"u}r E. coli O157:H7 und drei verschiedenen f{\"u}r L. pneumophila ausgew{\"a}hlt und f{\"u}r die Immunisierung mit chim{\"a}ren VP1 verwendet. Alle Immunseren zeigten eine antigenspezifische Immunantwort. Aus den nachfolgend generierten Hybridomzellen konnten mehrere Antik{\"o}rperkandidaten gewonnen werden, welche in Charakterisierungsstudien eine starke Bindung zu E. coli O157:H7 bzw. L. pneumophila vorwiesen. Kreuzreaktivit{\"a}ten zu anderen relevanten Mikroorganismen konnten keine bzw. nur in geringem Maße festgestellt werden. Folglich konnte der hier beschriebene interdisziplin{\"a}re Ansatz zur Generierung spezifischer mAK gegen Mikroorganismen nachweislich spezifische mAK hervorbringen und ist als hocheffizienter Arbeitsablauf f{\"u}r die Herstellung von Antik{\"o}rpern gegen Mikroorganismen einsetzbar.}, language = {de} } @article{HoffmannHaoShearwinetal.2019, author = {Hoffmann, Stefan A. and Hao, Nan and Shearwin, Keith E. and Arndt, Katja Maren}, title = {Characterizing transcriptional interference between converging genes in bacteria}, series = {ACS synthetic biology}, volume = {8}, journal = {ACS synthetic biology}, number = {3}, publisher = {American Chemical Society}, address = {Washington}, issn = {2161-5063}, doi = {10.1021/acssynbio.8b00477}, pages = {466 -- 473}, year = {2019}, abstract = {Antisense transcription is common in naturally occurring genomes and is increasingly being used in synthetic genetic circuitry as a tool for gene expression control. Mutual influence on the expression of convergent genes can be mediated by antisense RNA effects and by transcriptional interference (TI). We aimed to quantitatively characterize long-range TI between convergent genes with untranslated intergenic spacers of increasing length. After controlling for antisense RNA-mediated effects, which contributed about half of the observed total expression inhibition, the TI effect was modeled. To achieve model convergence, RNA polymerase processivity and collision resistance were assumed to be modulated by ribosome trailing. The spontaneous transcription termination rate in regions of untranslated DNA was experimentally determined. Our modeling suggests that an elongating RNA polymerase with a trailing ribosome is about 13 times more likely to resume transcription than an opposing RNA polymerase without a trailing ribosome, upon head-on collision of the two.}, language = {en} } @phdthesis{Kubis2020, author = {Kubis, Armin}, title = {Synthetic carbon neutral photorespiration bypasses}, school = {Universit{\"a}t Potsdam}, pages = {68}, year = {2020}, abstract = {With populations growing worldwide and climate change threatening food production there is an urgent need to find ways to ensure food security. Increasing carbon fixation rate in plants is a promising approach to boost crop yields. The carbon-fixing enzyme Rubisco catalyzes, beside the carboxylation reaction, also an oxygenation reaction that generates glycolate-2P, which needs to be recycled via a metabolic route termed photorespiration. Photorespiration dissipates energy and most importantly releases previously fixed CO2, thus significantly lowering carbon fixation rate and yield. Engineering plants to omit photorespiratory CO2 release is the goal of the FutureAgriculture consortium and this thesis is part of this collaboration. The consortium aims to establish alternative glycolate-2P recycling routes that do not release CO2. Ultimately, they are expected to increase carbon fixation rates and crop yields. Natural and novel reactions, which require enzyme engineering, were considered in the pathway design process. Here I describe the engineering of two pathways, the arabinose-5P and the erythrulose shunt. They were designed to recycle glycolate-2P via glycolaldehyde into a sugar phosphate and thereby reassimilate glycolate-2P to the Calvin cycle. I used Escherichia coli gene deletion strains to validate and characterize the activity of both synthetic shunts. The strains' auxotrophies can be alleviated by the activity of the synthetic route, thus providing a direct way to select for pathway activity. I introduced all pathway components to these dedicated selection strains and discovered inhibitions, limitations and metabolic cross talk interfering with pathway activity. After resolving these issues, I was able to show the in vivo activity of all pathway components and combine them into functional modules.. Specifically, I demonstrate the activity of a new-to-nature module of glycolate reduction to glycolaldehyde. Also, I successfully show a new glycolaldehyde assimilation route via arabinose-5P to ribulose-5P. In addition, all necessary enzymes for glycolaldehyde assimilation via L-erythrulose were shown to be active and an L-threitol assimilation route via L-erythrulose was established in E. coli. On their own, these findings demonstrate the power of using an easily engineerable microbe to test novel pathways; combined, they will form the basis for implementing photorespiration bypasses in plants.}, language = {en} } @article{ZupokGorkaSiemiatkowskaetal.2019, author = {Zupok, Arkadiusz and G{\´o}rka, Michał Jakub and Siemiatkowska, Beata and Skirycz, Aleksandra and Leimk{\"u}hler, Silke}, title = {Iron-Dependent Regulation of Molybdenum Cofactor Biosynthesis Genes in Escherichia coli}, series = {Journal of bacteriology}, volume = {201}, journal = {Journal of bacteriology}, number = {17}, publisher = {American Society for Microbiology}, address = {Washington}, issn = {0021-9193}, doi = {10.1128/JB.00382-19}, pages = {15}, year = {2019}, abstract = {Molybdenum cofactor (Moco) biosynthesis is a complex process that involves the coordinated function of several proteins. In recent years it has become obvious that the availability of iron plays an important role in the biosynthesis of Moco. First, the MoaA protein binds two (4Fe-4S] clusters per monomer. Second, the expression of the moaABCDE and moeAB operons is regulated by FNR, which senses the availability of oxygen via a functional NFe-4S) cluster. Finally, the conversion of cyclic pyranopterin monophosphate to molybdopterin requires the availability of the L-cysteine desulfurase IscS, which is a shared protein with a main role in the assembly of Fe-S clusters. In this report, we investigated the transcriptional regulation of the moaABCDE operon by focusing on its dependence on cellular iron availability. While the abundance of selected molybdoenzymes is largely decreased under iron-limiting conditions, our data show that the regulation of the moaABCDE operon at the level of transcription is only marginally influenced by the availability of iron. Nevertheless, intracellular levels of Moco were decreased under iron-limiting conditions, likely based on an inactive MoaA protein in addition to lower levels of the L-cysteine desulfurase IscS, which simultaneously reduces the sulfur availability for Moco production. IMPORTANCE FNR is a very important transcriptional factor that represents the master switch for the expression of target genes in response to anaerobiosis. Among the FNR-regulated operons in Escherichia coli is the moaABCDE operon, involved in Moco biosynthesis. Molybdoenzymes have essential roles in eukaryotic and prokaryotic organisms. In bacteria, molybdoenzymes are crucial for anaerobic respiration using alternative electron acceptors. This work investigates the connection of iron availability to the biosynthesis of Moco and the production of active molybdoenzymes.}, language = {en} } @article{SchiebelBoehmNitschkeetal.2017, author = {Schiebel, Juliane and Boehm, Alexander and Nitschke, Joerg and Burdukiewicz, Michal and Weinreich, Joerg and Ali, Aamir and Roggenbuck, Dirk and Roediger, Stefan and Schierack, Peter}, title = {Genotypic and Phenotypic Characteristics Associated with Biofilm Formation by Human Clinical Escherichia coli Isolates of Different Pathotypes}, series = {Applied and environmental microbiology}, volume = {83}, journal = {Applied and environmental microbiology}, publisher = {American Society for Microbiology}, address = {Washington}, issn = {0099-2240}, doi = {10.1128/AEM.01660-17}, pages = {15}, year = {2017}, abstract = {Bacterial biofilm formation is a widespread phenomenon and a complex process requiring a set of genes facilitating the initial adhesion, maturation, and production of the extracellular polymeric matrix and subsequent dispersal of bacteria. Most studies on Escherichia coli biofilm formation have investigated nonpathogenic E. coli K-12 strains. Due to the extensive focus on laboratory strains in most studies, there is poor information regarding biofilm formation by pathogenic E. coli isolates. In this study, we genotypically and phenotypically characterized 187 human clinical E. coli isolates representing various pathotypes (e.g., uropathogenic, enteropathogenic, and enteroaggregative E. coli). We investigated the presence of biofilm-associated genes ("genotype") and phenotypically analyzed the isolates for motility and curli and cellulose production ("phenotype"). We developed a new screening method to examine the in vitro biofilm formation ability. In summary, we found a high prevalence of biofilm-associated genes. However, we could not detect a biofilm-associated gene or specific phenotype correlating with the biofilm formation ability. In contrast, we did identify an association of increased biofilm formation with a specific E. coli pathotype. Enteroaggregative E. coli (EAEC) was found to exhibit the highest capacity for biofilm formation. Using our image-based technology for the screening of biofilm formation, we demonstrated the characteristic biofilm formation pattern of EAEC, consisting of thick bacterial aggregates. In summary, our results highlight the fact that biofilm-promoting factors shown to be critical for biofilm formation in nonpathogenic strains do not reflect their impact in clinical isolates and that the ability of biofilm formation is a defined characteristic of EAEC. IMPORTANCE Bacterial biofilms are ubiquitous and consist of sessile bacterial cells surrounded by a self-produced extracellular polymeric matrix. They cause chronic and device-related infections due to their high resistance to antibiotics and the host immune system. In nonpathogenic Escherichia coli, cell surface components playing a pivotal role in biofilm formation are well known. In contrast, there is poor information for their role in biofilm formation of pathogenic isolates. Our study provides insights into the correlation of biofilm-associated genes or specific phenotypes with the biofilm formation ability of commensal and pathogenic E. coli. Additionally, we describe a newly developed method enabling qualitative biofilm analysis by automated image analysis, which is beneficial for high-throughput screenings. Our results help to establish a better understanding of E. coli biofilm formation.}, language = {en} } @article{BarazaNeserJacksonetal.2016, author = {Baraza, Lilechi D. and Neser, Wekesa and Jackson, Korir Cheruiyot and Fredrick, Juma B. and Dennis, Ochieno and Wairimu, Kamau R. and Keya, Aggrey Osogo and Heydenreich, Matthias}, title = {Antimicrobial Coumarins from the Oyster Culinary-Medicinal Mushroom, Pleurotus ostreatus (Agaricomycetes), from Kenya}, series = {International journal of medicinal mushrooms}, volume = {18}, journal = {International journal of medicinal mushrooms}, publisher = {Begell House}, address = {Danbury}, issn = {1521-9437}, doi = {10.1615/IntJMedMushrooms.v18.i10.60}, pages = {905 -- 913}, year = {2016}, abstract = {Pleurotus ostreatus has been widely used as food because of its nutritional and medicinal properties. These have been attributed to the presence of macronutrients, minerals, vitamins, and amino acids, among other secondary metabolites. There are, however, few reports on the antimicrobial activities of different classes of purified compounds from P. ostreatus. This led to the current study, the objective of which was to chemically characterize the antibiotic activities of P. ()streams against selected human pathogenic bacteria and endophytic fungi. Chemical structures were determined using spectroscopic methods and by comparison with values of related structures reported in the literature. Pure compounds from P. ostreatus were tested in vitro against pathogenic bacteria (Staphylococcus aureus and Escherichia coli) and endophytic fungi (Pencillium digitatum and Fusarium prolferatum). A new compound, (E)-5,7-dimethoxy-6-(3-methylbuta-1,3-dienyl)-2H-chromen-2-one (5-methoxy-(E)-suberodiene) (compound 2), along with ergosterol (compound I.) and 5,7-dimethoxy-6-(3-methylbut-2-enyl)-2H-chromen-2-one (toddaculin; compound 3), were isolated from the fruiting bodies of P. ostreatus. The growth of S. aureus,E proliferatum, and P. digitatum colonies was inhibited in media containing compound 2, with minimum inhibitory concentrations closely comparable to those of conventional antibiotics.}, language = {en} } @article{BartholomaeusFedyuninFeistetal.2016, author = {Bartholom{\"a}us, Alexander and Fedyunin, Ivan and Feist, Peter and Sin, Celine and Zhang, Gong and Valleriani, Angelo and Ignatova, Zoya}, title = {Bacteria differently regulate mRNA abundance to specifically respond to various stresses}, series = {Geology}, volume = {374}, journal = {Geology}, publisher = {Royal Society}, address = {London}, issn = {1364-503X}, doi = {10.1098/rsta.2015.0069}, pages = {16}, year = {2016}, abstract = {Environmental stress is detrimental to cell viability and requires an adequate reprogramming of cellular activities to maximize cell survival. We present a global analysis of the response of Escherichia coli to acute heat and osmotic stress. We combine deep sequencing of total mRNA and ribosome-protected fragments to provide a genome-wide map of the stress response at transcriptional and translational levels. For each type of stress, we observe a unique subset of genes that shape the stress-specific response. Upon temperature upshift, mRNAs with reduced folding stability up-and downstream of the start codon, and thus with more accessible initiation regions, are translationally favoured. Conversely, osmotic upshift causes a global reduction of highly translated transcripts with high copy numbers, allowing reallocation of translation resources to not degraded and newly synthesized mRNAs.}, language = {en} } @misc{YanFriemelAloisietal.2016, author = {Yan, Robert and Friemel, Martin and Aloisi, Claudia and Huynen, Martijn and Taylor, Ian A. and Leimk{\"u}hler, Silke and Pastore, Annalisa}, title = {The eukaryotic-specific Isd11 is a complex- orphan protein with ability to bind the prokaryotic IscS}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {551}, issn = {1866-8372}, doi = {10.25932/publishup-41190}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-411906}, pages = {14}, year = {2016}, abstract = {The eukaryotic protein Isd11 is a chaperone that binds and stabilizes the central component of the essential metabolic pathway responsible for formation of iron-sulfur clusters in mitochondria, the desulfurase Nfs1. Little is known about the exact role of Isd11. Here, we show that human Isd11 (ISD11) is a helical protein which exists in solution as an equilibrium between monomer, dimeric and tetrameric species when in the absence of human Nfs1 (NFS1). We also show that, surprisingly, recombinant ISD11 expressed in E. coli co-purifies with the bacterial orthologue of NFS1, IscS. Binding is weak but specific suggesting that, despite the absence of Isd11 sequences in bacteria, there is enough conservation between the two desulfurases to retain a similar mode of interaction. This knowledge may inform us on the conservation of the mode of binding of Isd11 to the desulfurase. We used evolutionary evidence to suggest Isd11 residues involved in the interaction.}, language = {en} } @misc{DelCampoBartholomaeusFedyuninetal.2015, author = {Del Campo, Cristian and Bartholom{\"a}us, Alexander and Fedyunin, Ivan and Ignatova, Zoya}, title = {Secondary Structure across the Bacterial Transcriptome Reveals Versatile Roles in mRNA Regulation and Function}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {520}, issn = {1866-8372}, doi = {10.25932/publishup-40966}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-409662}, pages = {23}, year = {2015}, abstract = {Messenger RNA acts as an informational molecule between DNA and translating ribosomes. Emerging evidence places mRNA in central cellular processes beyond its major function as informational entity. Although individual examples show that specific structural features of mRNA regulate translation and transcript stability, their role and function throughout the bacterial transcriptome remains unknown. Combining three sequencing approaches to provide a high resolution view of global mRNA secondary structure, translation efficiency and mRNA abundance, we unraveled structural features in E. coli mRNA with implications in translation and mRNA degradation. A poorly structured site upstream of the coding sequence serves as an additional unspecific binding site of the ribosomes and the degree of its secondary structure propensity negatively correlates with gene expression. Secondary structures within coding sequences are highly dynamic and influence translation only within a very small subset of positions. A secondary structure upstream of the stop codon is enriched in genes terminated by UAA codon with likely implications in translation termination. The global analysis further substantiates a common recognition signature of RNase E to initiate endonucleolytic cleavage. This work determines for the first time the E. coli RNA structurome, highlighting the contribution of mRNA secondary structure as a direct effector of a variety of processes, including translation and mRNA degradation.}, language = {en} } @misc{ConnorZantowHustetal.2016, author = {Connor, Daniel Oliver and Zantow, Jonas and Hust, Michael and Bier, Frank Fabian and von Nickisch-Rosenegk, Markus}, title = {Identification of novel immunogenic proteins of Neisseria gonorrhoeae by phage display}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {541}, issn = {1866-8372}, doi = {10.25932/publishup-41107}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-411077}, pages = {24}, year = {2016}, abstract = {Neisseria gonorrhoeae is one of the most prevalent sexually transmitted diseases worldwide with more than 100 million new infections per year. A lack of intense research over the last decades and increasing resistances to the recommended antibiotics call for a better understanding of gonococcal infection, fast diagnostics and therapeutic measures against N. gonorrhoeae. Therefore, the aim of this work was to identify novel immunogenic proteins as a first step to advance those unresolved problems. For the identification of immunogenic proteins, pHORF oligopeptide phage display libraries of the entire N. gonorrhoeae genome were constructed. Several immunogenic oligopeptides were identified using polyclonal rabbit antibodies against N. gonorrhoeae. Corresponding full-length proteins of the identified oligopeptides were expressed and their immunogenic character was verified by ELISA. The immunogenic character of six proteins was identified for the first time. Additional 13 proteins were verified as immunogenic proteins in N. gonorrhoeae.}, language = {en} }