@article{SchuettRothkegelTrukenbrodetal.2019, author = {Sch{\"u}tt, Heiko Herbert and Rothkegel, Lars Oliver Martin and Trukenbrod, Hans Arne and Engbert, Ralf and Wichmann, Felix A.}, title = {Disentangling bottom-up versus top-down and low-level versus high-level influences on eye movements over time}, series = {Journal of vision}, volume = {19}, journal = {Journal of vision}, number = {3}, publisher = {Association for Research in Vision and Opthalmology}, address = {Rockville}, issn = {1534-7362}, doi = {10.1167/19.3.1}, pages = {23}, year = {2019}, abstract = {Bottom-up and top-down as well as low-level and high-level factors influence where we fixate when viewing natural scenes. However, the importance of each of these factors and how they interact remains a matter of debate. Here, we disentangle these factors by analyzing their influence over time. For this purpose, we develop a saliency model that is based on the internal representation of a recent early spatial vision model to measure the low-level, bottom-up factor. To measure the influence of high-level, bottom-up features, we use a recent deep neural network-based saliency model. To account for top-down influences, we evaluate the models on two large data sets with different tasks: first, a memorization task and, second, a search task. Our results lend support to a separation of visual scene exploration into three phases: the first saccade, an initial guided exploration characterized by a gradual broadening of the fixation density, and a steady state that is reached after roughly 10 fixations. Saccade-target selection during the initial exploration and in the steady state is related to similar areas of interest, which are better predicted when including high-level features. In the search data set, fixation locations are determined predominantly by top-down processes. In contrast, the first fixation follows a different fixation density and contains a strong central fixation bias. Nonetheless, first fixations are guided strongly by image properties, and as early as 200 ms after image onset, fixations are better predicted by high-level information. We conclude that any low-level, bottom-up factors are mainly limited to the generation of the first saccade. All saccades are better explained when high-level features are considered, and later, this high-level, bottom-up control can be overruled by top-down influences.}, language = {en} } @misc{SchwetlickTrukenbrodEngbert2019, author = {Schwetlick, Lisa and Trukenbrod, Hans Arne and Engbert, Ralf}, title = {The Influence of Visual Long Term Memory on Eye Movements During Scene Viewing}, series = {Perception}, volume = {48}, journal = {Perception}, number = {S1}, publisher = {Sage Publ.}, address = {London}, issn = {0301-0066}, pages = {138 -- 138}, year = {2019}, language = {en} } @misc{SchuettRothkegelTrukenbrodetal.2019, author = {Sch{\"u}tt, Heiko Herbert and Rothkegel, Lars Oliver Martin and Trukenbrod, Hans Arne and Engbert, Ralf and Wichmann, Felix A.}, title = {Predicting fixation densities over time from early visual processing}, series = {Perception}, volume = {48}, journal = {Perception}, publisher = {Sage Publ.}, address = {London}, issn = {0301-0066}, pages = {64 -- 65}, year = {2019}, abstract = {Bottom-up saliency is often cited as a factor driving the choice of fixation locations of human observers, based on the (partial) success of saliency models to predict fixation densities in free viewing. However, these observations are only weak evidence for a causal role of bottom-up saliency in natural viewing behaviour. To test bottom-up saliency more directly, we analyse the performance of a number of saliency models---including our own saliency model based on our recently published model of early visual processing (Sch{\"u}tt \& Wichmann, 2017, JoV)---as well as the theoretical limits for predictions over time. On free viewing data our model performs better than classical bottom-up saliency models, but worse than the current deep learning based saliency models incorporating higher-level information like knowledge about objects. However, on search data all saliency models perform worse than the optimal image independent prediction. We observe that the fixation density in free viewing is not stationary over time, but changes over the course of a trial. It starts with a pronounced central fixation bias on the first chosen fixation, which is nonetheless influenced by image content. Starting with the 2nd to 3rd fixation, the fixation density is already well predicted by later densities, but more concentrated. From there the fixation distribution broadens until it reaches a stationary distribution around the 10th fixation. Taken together these observations argue against bottom-up saliency as a mechanistic explanation for eye movement control after the initial orienting reaction in the first one to two saccades, although we confirm the predictive value of early visual representations for fixation locations. The fixation distribution is, first, not well described by any stationary density, second, is predicted better when including object information and, third, is badly predicted by any saliency model in a search task.}, language = {en} } @article{ChandraKruegelEngbert2020, author = {Chandra, Johan and Kr{\"u}gel, Andr{\´e} and Engbert, Ralf}, title = {Experimental test of Bayesian saccade targeting under reversed reading direction}, series = {Attention, Perception, \& Psychophysics}, volume = {82}, journal = {Attention, Perception, \& Psychophysics}, publisher = {Springer}, address = {New York, NY}, issn = {1943-393X}, doi = {10.3758/s13414-019-01814-4}, pages = {1230 -- 1240}, year = {2020}, abstract = {During reading, rapid eye movements (saccades) shift the reader's line of sight from one word to another for high-acuity visual information processing. While experimental data and theoretical models show that readers aim at word centers, the eye-movement (oculomotor) accuracy is low compared to other tasks. As a consequence, distributions of saccadic landing positions indicate large (i) random errors and (ii) systematic over- and undershoot of word centers, which additionally depend on saccade lengths (McConkie et al.Visual Research, 28(10), 1107-1118,1988). Here we show that both error components can be simultaneously reduced by reading texts from right to left in German language (N= 32). We used our experimental data to test a Bayesian model of saccade planning. First, experimental data are consistent with the model. Second, the model makes specific predictions of the effects of the precision of prior and (sensory) likelihood. Our results suggest that it is a more precise sensory likelihood that can explain the reduction of both random and systematic error components.}, language = {en} } @article{ChandraKruegelEngbert2020, author = {Chandra, Johan and Kr{\"u}gel, Andr{\´e} and Engbert, Ralf}, title = {Modulation of oculomotor control during reading of mirrored and inverted texts}, series = {Scientific Reports}, volume = {10}, journal = {Scientific Reports}, publisher = {Macmillan Publishers Limited, part of Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-020-60833-6}, pages = {15}, year = {2020}, abstract = {The interplay between cognitive and oculomotor processes during reading can be explored when the spatial layout of text deviates from the typical display. In this study, we investigate various eye-movement measures during reading of text with experimentally manipulated layout (word-wise and letter-wise mirrored-reversed text as well as inverted and scrambled text). While typical findings (e.g., longer mean fixation times, shorter mean saccades lengths) in reading manipulated texts compared to normal texts were reported in earlier work, little is known about changes of oculomotor targeting observed in within-word landing positions under the above text layouts. Here we carry out precise analyses of landing positions and find substantial changes in the so-called launch-site effect in addition to the expected overall slow-down of reading performance. Specifically, during reading of our manipulated text conditions with reversed letter order (against overall reading direction), we find a reduced launch-site effect, while in all other manipulated text conditions, we observe an increased launch-site effect. Our results clearly indicate that the oculomotor system is highly adaptive when confronted with unusual reading conditions.}, language = {en} } @misc{ChandraKruegelEngbert2020, author = {Chandra, Johan and Kr{\"u}gel, Andr{\´e} and Engbert, Ralf}, title = {Modulation of oculomotor control during reading of mirrored and inverted texts}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {659}, issn = {1866-8364}, doi = {10.25932/publishup-49487}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-494879}, pages = {17}, year = {2020}, abstract = {The interplay between cognitive and oculomotor processes during reading can be explored when the spatial layout of text deviates from the typical display. In this study, we investigate various eye-movement measures during reading of text with experimentally manipulated layout (word-wise and letter-wise mirrored-reversed text as well as inverted and scrambled text). While typical findings (e.g., longer mean fixation times, shorter mean saccades lengths) in reading manipulated texts compared to normal texts were reported in earlier work, little is known about changes of oculomotor targeting observed in within-word landing positions under the above text layouts. Here we carry out precise analyses of landing positions and find substantial changes in the so-called launch-site effect in addition to the expected overall slow-down of reading performance. Specifically, during reading of our manipulated text conditions with reversed letter order (against overall reading direction), we find a reduced launch-site effect, while in all other manipulated text conditions, we observe an increased launch-site effect. Our results clearly indicate that the oculomotor system is highly adaptive when confronted with unusual reading conditions.}, language = {en} } @article{TrukenbrodBarthelmeWichmannetal.2019, author = {Trukenbrod, Hans Arne and Barthelme, Simon and Wichmann, Felix A. and Engbert, Ralf}, title = {Spatial statistics for gaze patterns in scene viewing}, series = {Journal of vision}, volume = {19}, journal = {Journal of vision}, number = {5}, publisher = {Association for Research in Vision and Opthalmology}, address = {Rockville}, issn = {1534-7362}, doi = {10.1167/19.6.5}, pages = {1 -- 19}, year = {2019}, abstract = {Scene viewing is used to study attentional selection in complex but still controlled environments. One of the main observations on eye movements during scene viewing is the inhomogeneous distribution of fixation locations: While some parts of an image are fixated by almost all observers and are inspected repeatedly by the same observer, other image parts remain unfixated by observers even after long exploration intervals. Here, we apply spatial point process methods to investigate the relationship between pairs of fixations. More precisely, we use the pair correlation function, a powerful statistical tool, to evaluate dependencies between fixation locations along individual scanpaths. We demonstrate that aggregation of fixation locations within 4 degrees is stronger than expected from chance. Furthermore, the pair correlation function reveals stronger aggregation of fixations when the same image is presented a second time. We use simulations of a dynamical model to show that a narrower spatial attentional span may explain differences in pair correlations between the first and the second inspection of the same image.}, language = {en} } @article{MeybergSinnEngbertetal.2017, author = {Meyberg, Susann and Sinn, Petra and Engbert, Ralf and Sommer, Werner}, title = {Revising the link between microsaccades and the spatial cueing of voluntary attention}, series = {Vision research : an international journal for functional aspects of vision.}, volume = {133}, journal = {Vision research : an international journal for functional aspects of vision.}, publisher = {Elsevier}, address = {Oxford}, issn = {0042-6989}, doi = {10.1016/j.visres.2017.01.001}, pages = {47 -- 60}, year = {2017}, abstract = {Microsaccades - i.e., small fixational saccades generated in the superior colliculus (SC) - have been linked to spatial attention. While maintaining fixation, voluntary shifts of covert attention toward peripheral targets result in a sequence of attention-aligned and attention-opposing microsaccades. In most previous studies the direction of the voluntary shift is signaled by a spatial cue (e.g., a leftwards pointing arrow) that presents the most informative part of the cue (e.g., the arrowhead) in the to-be attended visual field. Here we directly investigated the influence of cue position and tested the hypothesis that microsaccades align with cue position rather than with the attention shift. In a spatial cueing task, we presented the task-relevant part of a symmetric cue either in the to-be attended visual field or in the opposite field. As a result, microsaccades were still weakly related to the covert attention shift; however, they were strongly related to the position of the cue even if that required a movement opposite to the cued attention shift. Moreover, if microsaccades aligned with cue position, we observed stronger cueing effects on manual response times. Our interpretation of the data is supported by numerical simulations of a computational model of microsaccade generation that is based on SC properties, where we explain our findings by separate attentional mechanisms for cue localization and the cued attention shift. We conclude that during cueing of voluntary attention, microsaccades are related to both - the overt attentional selection of the task-relevant part of the cue stimulus and the subsequent covert attention shift.(C) 2017 Elsevier Ltd. All rights reserved.}, language = {en} } @article{HerrmannMetzlerEngbert2017, author = {Herrmann, Carl J. J. and Metzler, Ralf and Engbert, Ralf}, title = {A self-avoiding walk with neural delays as a model of fixational eye movements}, series = {Scientific reports}, volume = {7}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-017-13489-8}, pages = {17}, year = {2017}, abstract = {Fixational eye movements show scaling behaviour of the positional mean-squared displacement with a characteristic transition from persistence to antipersistence for increasing time-lag. These statistical patterns were found to be mainly shaped by microsaccades (fast, small-amplitude movements). However, our re-analysis of fixational eye-movement data provides evidence that the slow component (physiological drift) of the eyes exhibits scaling behaviour of the mean-squared displacement that varies across human participants. These results suggest that drift is a correlated movement that interacts with microsaccades. Moreover, on the long time scale, the mean-squared displacement of the drift shows oscillations, which is also present in the displacement auto-correlation function. This finding lends support to the presence of time-delayed feedback in the control of drift movements. Based on an earlier non-linear delayed feedback model of fixational eye movements, we propose and discuss different versions of a new model that combines a self-avoiding walk with time delay. As a result, we identify a model that reproduces oscillatory correlation functions, the transition from persistence to antipersistence, and microsaccades.}, language = {en} } @article{RothkegelTrukenbrodSchuettetal.2017, author = {Rothkegel, Lars Oliver Martin and Trukenbrod, Hans Arne and Sch{\"u}tt, Heiko Herbert and Wichmann, Felix A. and Engbert, Ralf}, title = {Temporal evolution of the central fixation bias in scene viewing}, series = {Journal of vision}, volume = {17}, journal = {Journal of vision}, publisher = {Association for Research in Vision and Opthalmology}, address = {Rockville}, issn = {1534-7362}, doi = {10.1167/17.13.3}, pages = {1626 -- 1638}, year = {2017}, abstract = {When watching the image of a natural scene on a computer screen, observers initially move their eyes toward the center of the image—a reliable experimental finding termed central fixation bias. This systematic tendency in eye guidance likely masks attentional selection driven by image properties and top-down cognitive processes. Here, we show that the central fixation bias can be reduced by delaying the initial saccade relative to image onset. In four scene-viewing experiments we manipulated observers' initial gaze position and delayed their first saccade by a specific time interval relative to the onset of an image. We analyzed the distance to image center over time and show that the central fixation bias of initial fixations was significantly reduced after delayed saccade onsets. We additionally show that selection of the initial saccade target strongly depended on the first saccade latency. A previously published model of saccade generation was extended with a central activation map on the initial fixation whose influence declined with increasing saccade latency. This extension was sufficient to replicate the central fixation bias from our experiments. Our results suggest that the central fixation bias is generated by default activation as a response to the sudden image onset and that this default activation pattern decreases over time. Thus, it may often be preferable to use a modified version of the scene viewing paradigm that decouples image onset from the start signal for scene exploration to explicitly reduce the central fixation bias.}, language = {en} }