@article{HaddadZielkeArrowsmithetal.2012, author = {Haddad, David E. and Zielke, Olaf and Arrowsmith, J. Ramon and Purvance, Matthew D. and Haddad, Amanda G. and Landgraf, Angela}, title = {Estimating two-dimensional static stabilities and geomorphic settings of precariously balanced rocks from unconstrained digital photographs}, series = {Geosphere}, volume = {8}, journal = {Geosphere}, number = {5}, publisher = {American Institute of Physics}, address = {Boulder}, issn = {1553-040X}, doi = {10.1130/GES00788.1}, pages = {1042 -- 1053}, year = {2012}, abstract = {The need to accurately document the spatiotemporal distribution of earthquake-generated strong ground motions is essential for evaluating the seismic vulnerability of sites of critical infrastructure. Understanding the threshold for maximum earthquake-induced ground motions at such sites provides valuable information to seismologists, earthquake engineers, local agencies, and policymakers when determining ground motion hazards of seismically sensitive infrastructures. In this context, fragile geologic features such as precariously balanced rocks (PBRs) serve as negative evidence for earthquake-induced ground motions and provide important physical constraints on the upper limits of ground motions. The three-dimensional (3D) shape of a PBR is a critical factor in determining its static stability and thus susceptibility to toppling during strong ground shaking events. Furthermore, the geomorphic settings of PBRs provide important controls on PBR exhumation histories that are interpreted from surface exposure dating methods. In this paper, we present PBRslenderness, a MATLAB-based program that evaluates the two-dimensional (2D) static stabilities of PBRs from unconstrained digital photographs. The program's graphical user interface allows users to interactively digitize a PBR and calculates the 2D geometric parameters that define its static stability. A reproducibility study showed that our 2D calculations compare well against their counterparts that were computed in 3D (R-2 = 0.77-0.98 for 22 samples). A sensitivity study for single-user and multiuser digitization routines further confirmed the reproducibility of PBRslenderness estimates (coefficients of variation c(v) = 4.3\%-6.5\% for 100 runs; R-2 = 0.87-0.99 for 20 PBRs). We used PBRslenderness to analyze 261 PBRs in a low-seismicity setting to investigate the local geomorphic controls on PBR stability and preservation. PBRslenderness showed that a PBR's shape strongly controls its static stability and that there is no relationship between a PBR's stability and its geomorphic location in a drainage basin. However, the geomorphic settings of PBRs control their preservation potential by restricting their formation to hillslope gradients <40 degrees and the upper reaches of drainage basins. Such examples of our program's utility have led to its use in archival efforts of PBRs in southern California and Nevada, USA.}, language = {en} } @article{LandgrafZielkeArrowsmithetal.2013, author = {Landgraf, Angela and Zielke, Olaf and Arrowsmith, J. Ram{\´o}n and Ballato, Paolo and Strecker, Manfred and Schildgen, Taylor F. and Friedrich, Anke M. and Tabatabaei, Sayyed-Hassan}, title = {Differentiating simple and composite tectonic landscapes using numerical fault slip modeling with an example from the south central Alborz Mountains, Iran}, series = {Journal of geophysical research : Earth surface}, volume = {118}, journal = {Journal of geophysical research : Earth surface}, number = {3}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9003}, doi = {10.1002/jgrf.20109}, pages = {1792 -- 1805}, year = {2013}, abstract = {The tectonically driven growth of mountains reflects the characteristics of the underlying fault systems and the applied tectonic forces. Over time, fault networks might be relatively static, but stress conditions could change and result in variations in fault slip orientation. Such a tectonic landscape would transition from a simple to a composite state: the topography of simple landscapes is correlated with a single set of tectonic boundary conditions, while composite landscapes contain inherited topography due to earlier deformation under different boundary conditions. We use fault interaction modeling to compare vertical displacement fields with topographic metrics to differentiate the two types of landscapes. By successively rotating the axis of maximum horizontal stress, we produce a suite of vertical displacement fields for comparison with real landscapes. We apply this model to a transpressional duplex in the south central Alborz Mountains of Iran, where NW oriented compression was superseded by neotectonic NE compression. The consistency between the modeled displacement field and real landforms indicates that the duplex topography is mostly compatible with the modern boundary conditions, but might include a small remnant from the earlier deformation phase. Our approach is applicable for various tectonic settings and represents an approach to identify the changing boundary conditions that produce composite landscapes. It may be particularly useful for identifying changes that occurred in regions where river profiles may no longer record a signal of the change or where the spatial pattern of uplift is complex.}, language = {en} } @article{ZielkeStrecker2009, author = {Zielke, Olaf and Strecker, Manfred}, title = {Recurrence of large earthquakes in magmatic continental rifts : insights from a paleoseismic study along the Laikipia-Marmanet Fault, Subukia Valley, Kenya Rift}, issn = {0037-1106}, doi = {10.1785/0120080015}, year = {2009}, abstract = {The seismicity of the Kenya rift is characterized by high-frequency low-magnitude events concentrated along the rift axis. Its seismic character is typical for magmatically active continental rifts, where igneous material at a shallow depth causes extensive grid faulting and geothermal activity. Thermal overprinting and dike intrusion prohibit the buildup of large elastic strains, therefore prohibiting the generation of large-magnitude earthquakes. On 6 January 1928, the M-S 6.9 Subukia earthquake occurred on the Laikipia-Marmanet fault, the eastern rift-bounding structure of the central Kenya rift. It is the largest instrumentally recorded seismic event in the Kenya rift, standing in contrast to the current model of the rift's seismic character in which large earthquakes are not anticipated. Furthermore, the proximity of the ruptured fault and the rift axis is intriguing: The rift-bounding structure that ruptured in 1928 remains seismically active, capable of generating large-magnitude earthquakes, even though thermally weakened crust and better oriented structures are present along the rift axis nearby, prohibiting any significant buildup of elastic strain. We excavated the surface rupture of the 1928 Subukia earthquake to find evidence for preceding ground-rupturing earthquakes. We also made a total station survey of the site topography and mapped the site geology. We show that the Laikipia-Marmanet fault was repeatedly activated during the late Quaternary. We found evidence for six ground-rupturing earthquakes, including the 1928 earthquake. The topographic survey around the trench site revealed a degraded fault scarp of approximate to 7.5 m in height, offsetting a small debris slide. Using scarp-diffusion modeling, we estimated an uplift rate of U = 0.09-0.15 mm/yr, constraining the scarp age to 50-85 ka. Assuming an average fault dip of 55 degrees-75 degrees, the preferred uplift rate (0.15 mm/yr) accommodates approximately 10\%-20\% of the recent rate of extension (0.5 mm/yr) across the Kenya rift.}, language = {en} }