@article{MatternvonReppertZeuschneretal.2023, author = {Mattern, Maximilian and von Reppert, Alexander and Zeuschner, Steffen Peer and Herzog, Marc and Pudell, Jan-Etienne and Bargheer, Matias}, title = {Concepts and use cases for picosecond ultrasonics with x-rays}, series = {Photoacoustics}, volume = {31}, journal = {Photoacoustics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2213-5979}, doi = {10.1016/j.pacs.2023.100503}, pages = {22}, year = {2023}, abstract = {This review discusses picosecond ultrasonics experiments using ultrashort hard x-ray probe pulses to extract the transient strain response of laser-excited nanoscopic structures from Bragg-peak shifts. This method provides direct, layer-specific, and quantitative information on the picosecond strain response for structures down to few-nm thickness. We model the transient strain using the elastic wave equation and express the driving stress using Gruneisen parameters stating that the laser-induced stress is proportional to energy density changes in the microscopic subsystems of the solid, i.e., electrons, phonons and spins. The laser-driven strain response can thus serve as an ultrafast proxy for local energy-density and temperature changes, but we emphasize the importance of the nanoscale morphology for an accurate interpretation due to the Poisson effect. The presented experimental use cases encompass ultrathin and opaque metal-heterostructures, continuous and granular nanolayers as well as negative thermal expansion materials, that each pose a challenge to established all-optical techniques.}, language = {en} } @article{HerzogvonReppertPudelletal.2022, author = {Herzog, Marc and von Reppert, Alexander and Pudell, Jan-Etienne and Henkel, Carsten and Kronseder, Matthias and Back, Christian H. and Maznev, Alexei A. and Bargheer, Matias}, title = {Phonon-dominated energy transport in purely metallic heterostructures}, series = {Advanced functional materials}, volume = {32}, journal = {Advanced functional materials}, number = {41}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1616-301X}, doi = {10.1002/adfm.202206179}, pages = {8}, year = {2022}, abstract = {Ultrafast X-ray diffraction is used to quantify the transport of energy in laser-excited nanoscale gold-nickel (Au-Ni) bilayers. Electron transport and efficient electron-phonon coupling in Ni convert the laser-deposited energy in the conduction electrons within a few picoseconds into a strong non-equilibrium between hot Ni and cold Au phonons at the bilayer interface. Modeling of the subsequent equilibration dynamics within various two-temperature models confirms that for ultrathin Au films, the thermal transport is dominated by phonons instead of conduction electrons because of the weak electron-phonon coupling in Au.}, language = {en} } @article{ShaydukHallmannRodriguezFernandezetal.2022, author = {Shayduk, Roman and Hallmann, J{\"o}rg and Rodriguez-Fernandez, Angel and Scholz, Markus and Lu, Wei and B{\"o}senberg, Ulrike and M{\"o}ller, Johannes and Zozulya, Alexey and Jiang, Man and Wegner, Ulrike and Secareanu, Radu-Costin and Palmer, Guido and Emons, Moritz and Lederer, Max and Volkov, Sergey and Lindfors-Vrejoiu, Ionela and Schick, Daniel and Herzog, Marc and Bargheer, Matias and Madsen, Anders}, title = {Femtosecond x-ray diffraction study of multi-THz coherent phonons in SrTiO3}, series = {Applied physics letters}, volume = {120}, journal = {Applied physics letters}, number = {20}, publisher = {AIP Publishing}, address = {Melville}, issn = {0003-6951}, doi = {10.1063/5.0083256}, pages = {5}, year = {2022}, abstract = {We report generation of ultra-broadband longitudinal acoustic coherent phonon wavepackets in SrTiO3 (STO) with frequency components extending throughout the first Brillouin zone. The wavepackets are efficiently generated in STO using femtosecond infrared laser excitation of an atomically flat 1.6 nm-thick epitaxial SrRuO3 film. We use femtosecond x-ray diffraction at the European X-Ray Free Electron Laser Facility to study the dispersion and damping of phonon wavepackets. The experimentally determined damping constants for multi-THz frequency phonons compare favorably to the extrapolation of a simple ultrasound damping model over several orders of magnitude.}, language = {en} } @article{MatternvonReppertZeuschneretal.2022, author = {Mattern, Maximilian and von Reppert, Alexander and Zeuschner, Steffen Peer and Pudell, Jan-Etienne and K{\"u}hne, F. and Diesing, Detlef and Herzog, Marc and Bargheer, Matias}, title = {Electronic energy transport in nanoscale Au/Fe hetero-structures in the perspective of ultrafast lattice dynamics}, series = {Applied physics letters}, volume = {120}, journal = {Applied physics letters}, number = {9}, publisher = {AIP Publishing}, address = {Melville}, issn = {0003-6951}, doi = {10.1063/5.0080378}, pages = {5}, year = {2022}, abstract = {We study the ultrafast electronic transport of energy in a photoexcited nanoscale Au/Fe hetero-structure by modeling the spatiotemporal profile of energy densities that drives transient strain, which we quantify by femtosecond x-ray diffraction. This flow of energy is relevant for intrinsic demagnetization and ultrafast spin transport. We measured lattice strain for different Fe layer thicknesses ranging from few atomic layers to several nanometers and modeled the spatiotemporal flow of energy densities. The combination of a high electron-phonon coupling coefficient and a large Sommerfeld constant in Fe is found to yield electronic transfer of nearly all energy from Au to Fe within the first hundreds of femtoseconds.}, language = {en} } @article{ZeuschnerWangDebetal.2022, author = {Zeuschner, Steffen Peer and Wang, Xi-Guang and Deb, Marwan and Popova, Elena and Malinowski, Gregory and Hehn, Michel and Keller, Niels and Berakdar, Jamal and Bargheer, Matias}, title = {Standing spin wave excitation in Bi}, series = {Physical review : B, Condensed matter and materials physics}, volume = {106}, journal = {Physical review : B, Condensed matter and materials physics}, number = {13}, publisher = {American Physical Society}, address = {College Park}, issn = {2469-9950}, doi = {10.1103/PhysRevB.106.134401}, pages = {9}, year = {2022}, abstract = {Based on micromagnetic simulations and experimental observations of the magnetization and lattice dynamics after the direct optical excitation of the magnetic insulator Bi : YIG or indirect excitation via an optically opaque Pt/Cu double layer, we disentangle the dynamical effects of magnetic anisotropy and magneto-elastic coupling. The strain and temperature of the lattice are quantified via modeling ultrafast x-ray diffraction data. Measurements of the time-resolved magneto-optical Kerr effect agree well with the magnetization dynamics simulated according to the excitation via two mechanisms: the magneto-elastic coupling to the experimentally verified strain dynamics and the ultrafast temperature-induced transient change in the magnetic anisotropy. The numerical modeling proves that, for direct excitation, both mechanisms drive the fundamental mode with opposite phase. The relative ratio of standing spin wave amplitudes of higher-order modes indicates that both mechanisms are substantially active.}, language = {en} } @article{LiebigSarhanSchmittetal.2020, author = {Liebig, Ferenc and Sarhan, Radwan Mohamed and Schmitt, Clemens Nikolaus Zeno and Th{\"u}nemann, Andreas F. and Prietzel, Claudia Christina and Bargheer, Matias and Koetz, Joachim}, title = {Gold nanotriangles with crumble topping and their influence on catalysis and surface-enhanced raman spectroscopy}, series = {ChemPlusChem}, volume = {85}, journal = {ChemPlusChem}, number = {3}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2192-6506}, doi = {10.1002/cplu.201900745}, pages = {519 -- 526}, year = {2020}, abstract = {By adding hyaluronic acid (HA) to dioctyl sodium sulfosuccinate (AOT)-stabilized gold nanotriangles (AuNTs) with an average thickness of 7.5 +/- 1 nm and an edge length of about 175 +/- 17 nm, the AOT bilayer is replaced by a polymeric HA-layer leading to biocompatible nanoplatelets. The subsequent reduction process of tetrachloroauric acid in the HA-shell surrounding the AuNTs leads to the formation of spherical gold nanoparticles on the platelet surface. With increasing tetrachloroauric acid concentration, the decoration with gold nanoparticles can be tuned. SAXS measurements reveal an increase of the platelet thickness up to around 14.5 nm, twice the initial value of bare AuNTs. HRTEM micrographs show welding phenomena between densely packed particles on the platelet surface, leading to a crumble formation while preserving the original crystal structure. Crumbles crystallized on top of the platelets enhance the Raman signal by a factor of around 20, and intensify the plasmon-driven dimerization of 4-nitrothiophenol (4-NTP) to 4,4 '-dimercaptoazobenzene in a yield of up to 50 \%. The resulting crumbled nanotriangles, with a biopolymer shell and the absorption maximum in the second window for in vivo imaging, are promising candidates for biomedical sensing.}, language = {en} } @article{DebPopovaJaffresetal.2022, author = {Deb, Marwan and Popova, Elena and Jaffr{\`e}s, Henri-Yves and Keller, Niels and Bargheer, Matias}, title = {Polarization-dependent subpicosecond demagnetization in iron garnets}, series = {Physical review : B, covering condensed matter and materials physics}, volume = {106}, journal = {Physical review : B, covering condensed matter and materials physics}, number = {18}, publisher = {American Institute of Physics, American Physical Society}, address = {Woodbury, NY}, issn = {2469-9950}, doi = {10.1103/PhysRevB.106.184416}, pages = {7}, year = {2022}, abstract = {Controlling the magnetization dynamics at the fastest speed is a major issue of fundamental condensed matter physics and its applications for data storage and processing technologies. It requires a deep understanding of the interactions between the degrees of freedom in solids, such as spin, electron, and lattice as well as their responses to external stimuli. In this paper, we systematically investigate the fluence dependence of ultrafast magnetization dynamics induced by below-bandgap ultrashort laser pulses in the ferrimagnetic insulators BixY3-xFe5O12 with 1 xBi 3. We demonstrate subpicosecond demagnetization dynamics in this material followed by a very slow remagnetization process. We prove that this demagnetization results from an ultrafast heating of iron garnets by two-photon absorption (TPA), suggesting a phonon-magnon thermalization time of 0.6 ps. We explain the slow remagnetization timescale by the low phonon heat conductivity in garnets. Additionally, we show that the amplitudes of the demagnetization, optical change, and lattice strain can be manipulated by changing the ellipticity of the pump pulses. We explain this phenomenon considering the TPA circular dichroism. These findings open exciting prospects for ultrafast manipulation of spin, charge, and lattice dynamics in magnetic insulators by ultrafast nonlinear optics.}, language = {en} } @article{DebPopovaJaffresetal.2022, author = {Deb, Marwan and Popova, Elena and Jaffr{\`e}s, Henri-Yves and Keller, Niels and Bargheer, Matias}, title = {Controlling high-frequency spin-wave dynamics using double-pulse laser excitation}, series = {Physical review applied}, volume = {18}, journal = {Physical review applied}, number = {4}, publisher = {American Physical Society}, address = {College Park}, issn = {2331-7019}, doi = {10.1103/PhysRevApplied.18.044001}, pages = {7}, year = {2022}, abstract = {Manipulating spin waves is highly required for the development of innovative data transport and processing technologies. Recently, the possibility of triggering high-frequency standing spin waves in magnetic insulators using femtosecond laser pulses was discovered, raising the question about how one can manipulate their dynamics. Here we explore this question by investigating the ultrafast magnetiza-tion and spin-wave dynamics induced by double-pulse laser excitation. We demonstrate a suppression or enhancement of the amplitudes of the standing spin waves by precisely tuning the time delay between the two pulses. The results can be understood as the constructive or destructive interference of the spin waves induced by the first and second laser pulses. Our findings open exciting perspectives towards generating single-mode standing spin waves that combine high frequency with large amplitude and low magnetic damping.}, language = {en} } @article{MatternPudellDumesniletal.2023, author = {Mattern, Maximilian and Pudell, Jan-Etienne and Dumesnil, Karine and von Reppert, Alexander and Bargheer, Matias}, title = {Towards shaping picosecond strain pulses via magnetostrictive transducers}, series = {Photoacoustics}, volume = {30}, journal = {Photoacoustics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2213-5979}, doi = {10.1016/j.pacs.2023.100463}, pages = {7}, year = {2023}, abstract = {Using time-resolved x-ray diffraction, we demonstrate the manipulation of the picosecond strain response of a metallic heterostructure consisting of a dysprosium (Dy) transducer and a niobium (Nb) detection layer by an external magnetic field. We utilize the first-order ferromagnetic-antiferromagnetic phase transition of the Dy layer, which provides an additional large contractive stress upon laser excitation compared to its zerofield response. This enhances the laser-induced contraction of the transducer and changes the shape of the picosecond strain pulses driven in Dy and detected within the buried Nb layer. Based on our experiment with rare-earth metals we discuss required properties for functional transducers, which may allow for novel field-control of the emitted picosecond strain pulses.}, language = {en} } @article{SteteKoopmanBargheer2017, author = {Stete, Felix and Koopman, Wouter-Willem Adriaan and Bargheer, Matias}, title = {Signatures of strong coupling on nanoparticles}, series = {ACS Photonics}, volume = {4}, journal = {ACS Photonics}, publisher = {American Chemical Society}, address = {Washington}, issn = {2330-4022}, doi = {10.1021/acsphotonics.7b00113}, pages = {1669 -- 1676}, year = {2017}, abstract = {In the strong coupling regime, exciton and plasmon excitations are hybridized into combined system excitations. The correct identification of the coupling regime in these systems is currently debated, from both experimental and theoretical perspectives. In this article we show that the extinction spectra may show a large peak splitting, although the energy loss encoded in the absorption spectra clearly rules out the strong coupling regime. We investigate the coupling of J-aggregate excitons to the localized surface plasmon polaritons on gold nanospheres and nanorods by fine-tuning the plasmon resonance via layer-by-layer deposition of polyelectrolytes. While both structures show a characteristic anticrossing in extinction and scattering experiments, the careful assessment of the systems' light absorption reveals that strong coupling of the plasmon to the exciton is not present in the nanosphere system. In a phenomenological model of two classical coupled oscillators, a Fano-like regime causes only the resonance of the light-driven oscillator to split up, while the other one still dissipates energy at its original frequency. Only in the strong-coupling limit do both oscillators split up the frequencies at which they dissipate energy, qualitatively explaining our experimental finding.}, language = {en} }